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ABSTRACT

Deiters, U.K., 1987. Density-dependent mixing rules for the calculation of fluid phase
equilibria at high pressures. Fluid Phase Equilibria, 33: 267-293.

A variable exponent is introduced into the van der Waals mixing rules in order to account
for non-equiform particle distribution in mixtures of unlike molecules over a wide range of
densities. The exponent is obtained by integration of radial distribution functions of rigid
sphere mixtures. In connection with our own non-cubic equation of state, the modified
mixing rules significantly improve the prediction of phase equilibria in cryogenic mixtures
under high pressure, especially in the vicinity of critical points. The new mixing rules also
lead to better predictions of thermodynamic properties of Lennard-Jones mixtures. Some
details of the computational procedure are discussed.

INTRODUCTION

One of the most successful and most widely used methods for relating the
thermodynamic properties of a mixture to those of a pure fluid is the
so-called one-fluid theory. Its principle is to treat a mixture as a hypothetical
pure substance, whose characteristic parameters (molecular diameter, poten-
tial energy, etc.) are obtained by interpolation between the parameters of the
pure components. The interpolation formulae are usually referred to as
mixing rules.

The mixing rules are functions of composition: they are usually assumed
to be independent of density. In this case, the Helmholtz energy of a
mixture, which depends on density, temperature and composition, is repre-
sented by a parametric combination of a function of density and tempera-
ture (namely the pure substance Helmholtz energy function) and a set of
functions of composition (the mixing rules). The theoretical validity of such
an approach is questionable: in fact, for some model fluids, such as mixtures
of rigid spheres, it is positively known that their equation of state cannot be
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obtained from the appropriate pure fluid equation of state and density-inde-
pendent mixing rules (Lebowitz, 1964). Nevertheless, some density-indepen-
dent mixing rules have been found to be very good approximations, such as
the so-called van der Waals rules
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€0"03 = E inxkfikoig;c (1)
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Here, ¢, and o, denote the attractive energy parameter and collision
diameter pertaining to the interaction of the molecular species i and k. The
summations extend to all C components of the mixture. Throughout this
paper, the subscript ‘0’ denotes averaged properties.

The van der Waals rules are known to be reasonable for fluid mixtures at
low densities. At high densities, however, different rules are to be preferred.
Studies of the maximum numbers of nearest neighbours (Deiters, 1982b,
1983a; Eduljee, 1983; Sandler, 1983) indicate that, for dense fluids, the
mixing rules
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€00y = Z inxkfikogc (3)
ik
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with y =2 or y = 2.4 are more appropriate. Except for the exponent, these
mixing rules agree with the van der Waals rules. It is the purpose of this
work to derive the density and concentration dependence of y from statisti-
cal thermodynamical arguments and to study its influence on thermody-
namic properties, especially on phase equilibria, of fluid mixtures under high
pressures.

GENERALIZED MIXING RULES
Extended one-fluid theory

The following considerations pertain to multi-component mixtures, where
the molecules interact through pair potentials of approximately spherical
symmetry only. Let us assume that the intermolecular pair potential can be
divided into a repulsive and an attractive contribution

wy(r) = ui?(r) + uj'(r) (5)
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and that the effects of the repulsive potential have been accounted for by an
appropriate rigid body equation of state (e.g., Mansoori et al., 1971). Then,
the contribution of the attractive potential to the total Helmholtz energy of
the mixture is

A= ”szxxk/ uf(r) g (r)r? dr (6)

We shall, furthermore, assume that the intermolecular potentials u'(r) as
well as the average potential u"(r) are conformal to each other and related
to a reduced attractive potential (F)

up' (r) = ey ii(r/oy)  uy'(r)=eyii(r/o,) (7)

Splitting off a pure fluid term and switching to reduced variables leads from
eqn. (6) to

' )81
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Usually, the radial distribution functions of real fluid mixtures are not
available. Within the double sum in eqn. (9), we, therefore, replace them
with the radial distribution functions of rigid sphere mixtures, which are
sufficiently well known. This simplification seems to be justified for two
reasons:

(1) In dense fluids the structure is determined by repulsive forces rather
than by attractive forces (as can be seen from molecular dynamics studies,
e.g., Hoheisel and Kohler, 1984): at low densities the repulsive forces may
not prevail, but the total influence of the attractive potential is then rather
small, and a minor inaccuracy of the model has little influence on the
thermodynamic properties.

(2) Any influences of the attractive potentials on the fluid structure affect
g« and g, similarly, so that they cancel to some extent.

Similar arguments have been used in several recent publications which
deal with the development of more efficient mixing rules beyond one-fluid
theory (Deiters, 1986; Ely, 1986). But, in these publications, only the contact
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values of the radial distribution functions have been used, so that only the
molecules ‘in touch’ with others contribute to the deviations from the van
der Waals mixing rules. In this work, the integrals of the radial distribution
functions are evaluated throughout the range of the attractive potentials, so
that all neighbour particles within the attractive well of a molecule are
counted.

Starting from a somewhat different consideration, namely from properties
of the partition function of a square-well fluid, Sandler (1985) as well as Lee
et al. (1986) arrived at improved mixing rules, which contain corrections for
the true numbers of nearest neighbours and which—as far as square-well
particles are concerned—are similar to eqns. (8) and (9) of this work. These
equations, however, are not restricted to one kind of pair potential only.
Furthermore, Lee et al. (1986) focussed their attention on molecules of
different attractive well-depths, but equal sizes, and on the local composi-
tions caused by those attractive energy differences. This work considers
‘molecules of different sizes, and stresses the influence of the repulsive forces.
The resulting thermodynamic functions and mixing rules are, therefore,
different, although there is some agreement in essence.

Replacing the real fluid radial distribution functions g, (r) by hard
sphere functions g/¥(r) amounts to using a first-order perturbation theory
with a hard sphere mixture as reference system. This perturbation treatment,
however, is not applied to eqn. (9) as a whole, but only to the double sum.

To simplify the further evaluation of 4®", and in view of eqn. (3), we
introduce the exponent vy,, as defined by

Ja®el(prar| o
Ya=3+1In /1n(o;") (10)
Ja(F)gse(7)7* dF ’

In the strict sense, it is necessary to maintain a distinction between the
different v,,, but it turns out that they have almost the same value (Table 1).
Therefore, it seems justified to use only one exponent for all interactions in a
mixture: in the following text the subscripts of y are therefore omitted. With
this definition of vy, eqn. (9) can be transformed into

27N ©_ g g €0 ,
A2t = % eoo(ffo u(r)go(r)rzdr%:é:x,xkﬁ (11)

Until now, the average potential parameters €, and o, have been left
undefined. We are, therefore, free to chose values for these parameters that
let the double sum in eqn. (11) become 1. Evidently, this can be achieved by
using the mixing rules (3) and (4): however, y is now a function of density,
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TABLE 1
Mixing rule exponents for the square-well 1.5 potential (binary mixture)
X, 0,,/0,5,=0.8 011/05, = 0.6
£=0.1 £=03 £=01 £=03
120 V2 120 Y ) 12 120 V2

0.10 2972 2.973 2.769 2.762 2.981 2.984 2.827 2.815
0.20 297 2.972 2.764 2.757 2.980 2.983 2.822 2.810
0.30 2.970 297 2.759 2.752 2.978 2.981 2.815 2.804
0.40 2.968 2.969 2.752 2.745 2.976 2.979 2.807 2.796
0.50 2.966 2.967 2.745 2.738 2.974 2.977 2.798 2.788
0.60 2.964 2.965 2.737 2.731 2971 2.974 2.785 2,777
0.70 2.962 2.962 2.728 2.722 2.967 2.969 2.768 2.762
0.80 2.959 2.959 2.718 2.712 2.961 2.963 2.746 2.743
0.90 2.955 2.956 2.706 2.701 2.951 2.954 2.713 2.718
0.99 2.952 2.952 2.693 2.690 2.938 2.940 2.667 2.687

mole fraction, and diameter ratio according to its definition (10). The
resulting expression for the average value of the attraction parameter is

Z inxk‘ikoizc

ey = LKL (12)

E inxko.l

With the mixing rules (3) and (4), eqn. (11) finally reduces to a simple
expression for a pure fluid

(e o]
A = —Z;Neoogf i(7) go (7)7* dF (13)
0

This expression will later be identified with the (integrated) attractive term
of an equation of state for real pure fluids. We have, therefore, arrived at an
extended one-fluid formalism, namely a combination of a pure fluid equa-
tion (11) with a set of mixing rules (3) and (4). It is important to note that
these mixing rules pertain to the attractive contribution to the Helmholtz
energy only: the mixing rules within the repulsive contribution, where
averaging of covolumes or similar parameters related to ¢ is preferred, are
not affected by the considerations of this section.

Calculation of y

The exponent y has to be determined by integration of the appropriate
hard sphere radial distribution functions. These can be generated in the
Percus-Yevick approximation by means of Baxter’s formalism (Baxter,
1970; Fischer and Lago, 1983). For numerical convenience we have tabu-
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lated y values of binary mixtures for many densities, compositions, and
diameter ratios, and then constructed interpolation functions. The shapes of
these functions depend on the attractive potential function.

In the case of a shallow constant potential with an infinite range, which is
the potential that leads to the van der Waals equation of state, the evalua-
tion of eqn. (10) yields y = 3. The same value of the exponent is obtained, if
all radial distribution functions g, (7) and g,(7) coincide. Therefore, the
van der Waals mixing rules (1) and (2) are recovered as a special case.

For the practical calculation of y values it is advantageous not to utilize
eqn. (10), because this requires the averages gi(r) and o, to be known in
advance, but to use one of the components, e.g. component 1, as a reference

i ,S Fodr
v/ =3+In [k ) ﬂ%%i) (14)
[a(Pgh(F)Far|

As long as the v, from this equation agree with each other, they agree with
the v,, from eqn. (10) too. Generally, the different v, turn out to agree
quite well, except for high densities or extreme diameter ratios. But, then the
Percus—Yevick treatment of the rigid-sphere problem is no longer accurate
either. The results for two pair potentials, which have proven useful for the
description of real fluids, namely the square well 1.5 and Lennard-Jones
12/6, are given in the following sections.

Square-well potential
The range of the potential is assumed to be 1.5 diameter units

~ren_ [ =1 F<1.5
““)_{ 0if 7> 1.5 (15)
The resulting interpolation formula for vy is
£\ c
y=a+ 0.4895655( T $) Z‘LZ In(o,,/0.;) (16)
with @ = 3(1 — ¢?) (main density effect) (17)
™ N & 3 .
=57 E o, (reduced density) (18)
X;0;;

and ¢, = —"— (contact site fraction) (19)

Z X0k

This expression for y is based on radial distribution functions of rigid
sphere mixtures with densities £ up to 0.45 and diameter ratios up to 2.5.
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Fig. 1. Composition and density dependence of the mixing rule exponent for binary mixtures
with a square-well 1.5 potential: diameter-ratio, 0.6 (index ‘1’ refers to the smaller compo-
nent); mole fraction range, 0-1; reduced density range, 0—0.5; exponent range, 2.4-3.0.

As it turns out from the integration of the radial distribution functions, y
indeed approaches 3 at low densities, but decreases to values near 2.4 for
high densities. It also depends slightly on the diameter ratio and the
composition of the mixture. Figure 1 shows the functional behaviour of y
for a binary square-well fluid.

The good agreement of y;, and y,, for the square-well 1.5 potential is
probably due to the fact that the radial distribution functions have their first

TABLE 2

Mixing rule exponents for equimolar binary mixtures at £ = 0.3, calculated for square-well
potentials of variable width w

w 011/0,, =0.8 0,,/0,, =0.6 01,/05, =04
2 Yz/z 12 Y22 T2 Y2

1.1 3.196 3.231 3.152 3.224 3.100 3.206
1.2 3.061 3.079 3.050 3.090 3.038 3.104
1.3 2.935 2.939 2.954 2.967 2.978 3.009
14 2.827 2.822 2.868 2.864 2.921 2.928
1.5 2.745 2.738 2.798 2.788 2.871 2.865
1.6 2.697 2.696 2.748 2.746 2.830 2.819
1.7 2.688 2.700 2.724 2.740 2.799 2.787
1.8 2.719 2.751 2.726 2.757 2.776 2.773
1.9 2.789 2.838 2.747 2.791 2.761 2.773

20 2.882 2.931 2.779 2.837 2.752 2.788
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minimum near 1.50,;. Table 2 shows the dependence of the y exponents on
the width of the square-well potential. The values approach 3 for wide
potentials, but at the same time the agreement of y;, and y,, deteriorates
somewhat. For short-ranging potentials the exponents merely reflect the
g:;(r) values at contact and may have values above 3.

Lennard-Jones 12 / 6 potential

In contrast to the square-well potential there is more than one convention
by which the Lennard-Jones potential can be divided into a repulsive and
an attractive function. We have calculated y values for two different cases:

(1) The potential is split at its minimum according to Weeks et al. (1971)

s -1 if F<2'°
“(')‘{ A(F2—F6)  if 7> 216 (20)
The interpolation function for y is
c c
vy=a+0.0308976%73 " ¢.Y" In(o0,;/0.x) (21)
ik
£3/2
with a = 3(1 - —4—) (22)
(2) The potential is split at zero energy
i 0 if F<1
“(’)“{4(7—12-7-6) if 7> 1 (23)
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Fig. 2. Density dependence of the mixing rule exponent for binary mixtures with square-well
1.5 potentials ( ) and Lennard—Jones 12 /6 potentials split at their minimum (— — —).
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The interpolation function for vy is

C C
y=a+0.046889¢°Y 4.3 In(o,/0,,) (24)
i k
1.6
with a = 3(1 —~ 451 ) (25)

¢ and g, are defined as before (eqns. (18) and (19)). Because of the wider
range of the Lennard-Jones potential, its y exponents are closer to the
limiting value 3 than the exponents of the square-well 1.5 potential. For the
Lennard—Jones potential the y exponents are less dependent on.composition
and size ratio: the agreement between v, and v,, is not quite as good as it is
for the square-well potential. The density and concentration dependence of
y for a Lennard—Jones potential (split at its minimum) is compared to that
of a square-well fluid in Fig. 2.

Quasichemical correction

The y-exponent as defined by eqn. (10) does not account for the effect of
the attractive potentials on the radial distribution functions. To compensate
for this disadvantage, at least partially, we attempt a nonrandomness correc-
tion according to a quasichemical model.

The quasichemical theory of Guggenheim (1952) yields the following
equation for the average attractive energy parameter of a binary mixture of
molecules with equal sizes

€O = €11x1(1 - WXZ) + 2(12x1x2W+ 622.X2(1 - le) (26)
2

1+ \/(1 +4x1x2[exp(— %) - 1])

and Af = 2(12 - 611 - 622

with W=

The generalization of eqn. (26) to spherical molecules of different sizes is
possible approximately. Such a generalization has to account for the fact
that coordination numbers for unlike molecules depend on their size ratios.
In analogy to a treatment published earlier (Deiters, 1983a), we shall assume
that each molecule i has zs;, contact sites (z = average coordination num-
ber) and that each neighbour of species k occupies s,, contact sites. Then
the energy per contact site is €,,/s;,. The maximum number of nearest
neighbours of the same species to an i molecule is given by zs, /s; =z =
constant, whereas the maximum number of neighbours of species k is
zs;;,/S; and depends on the ratio of s-parameters, and therefore on the



276

diameter ratio. If the contact sites are treated as independent from each
other, the quasichemical equation of Guggenheim can be solved analytically:
the result is similar to eqn. (26), but now all mole fractions must be replaced
by ‘contact site fractions’ and all interaction energies by ‘energies per
contact site’

€ € € €
(5), = a1 - Way) + 2 2 qg W + 2, (1 - Way) (27)

s/o S S12 S22
with W= 2

Ae
1+4/|1+4499, exp(—ﬁ)—l
L R— (contact site fraction)
& X811 T X282
2851, + 511 +
Ae = (2€L2 . E)M (contact exchange energy)
12 Su S 4

In analogy to eqn. (27) an ‘average number of molecules per contact’ can be
defined by

1 _ _ _
(;)0 = 5111‘11(1 - W‘Iz) + 25121‘11‘12W"' 5221422(1 - W%) (28)

From eqns. (27) and (28) the average interaction energy is obtained as

(12, @

This is the mixing rule for the energy parameter which is used in the
following sections. The s, are related to the molecular diameters: by
combining previous results (Deiters, 1983a) with the recent theory of the y
exponent, we obtain the following definitions for the s,
Y
2

ii ~ Oii Sk~ 1

—_— + —_

Oii Ok

(30)

The proportionality constant is not important, because only ratios of s,
parameters appear in the mixing rules. For numerical convenience we set the
s value of the smallest molecule in a mixture equal to 1.

For high temperatures, or small values of the contact exchange energy, W
becomes 1 and eqn. (27) reduces to

€ €11 > €12 €2 -
- =g +22qq+ — 31
(s )0 s B2 et (31)
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Equation (28) behaves similarly. Inserting eqn. (31) and the analogous high
temperature limit of (28) into the mixing rule (29) and using the relations
between the s;, and the o,, leads to the following expression for the average
interaction energy

2 Y Y 2 Y
€ = X1€1107) + 2X1X€1,07; + X3€,,0),
0=

(32)

2y Y 2y
X107} + 2x,x,07, + X505,

This result agrees with the previously derived mixing rule (12). Therefore,
eqn. (29) has indeed (12) as its high-temperature limit.

The identification of the quasichemical energy parameters with pair
potential parameters, the treatment of ‘contact sites’ as independent entities,
and the assumption of full interaction between nearest neighbours (and no
interaction with more distant molecules) are strong simplifications of reality.
However, the quasichemical model outlined above is not used as the starting
point for all further thermodynamic considerations, but only as a minor
correction to a mixing rule.

For most real systems the contact exchange energy is so small in compari-
son to k7T that the quasichemical correction has little effect. However, there
are cryogenic applications (see next section), where it may not be safe to
neglect this correction.

APPLICATION

If the new mixing rule of the energy parameter is introduced into an
equation for the Helmholtz energy of a pure fluid, and the resulting
expression is applied to the calculation of phase equilibria in mixtures, a
mathematical problem is encountered: because of the additional density and
composition dependence, which is introduced into the Helmholtz energy
equation through the new mixing rules, the formal differentiation of this
equation in order to obtain the pressure or the chemical potentials is—al-
though straightforward—rather time-consuming, at least, in connection with
the complicated non-cubic equations of state which are considered below. It
is therefore advantageous to utilize numerical differentiation. An algorithm
for the calculation of phase equilibria which avoids the explicit calculation
of chemical potentials or fugacities has been described previously (Deiters,
1985): an algorithm for the calculation of densities for given pressures and
temperatures is outlined in the appendix. As a consequence, it is possible to
write a computer program for the calculation of phase equilibria, or other
mixture properties, in which only one subroutine, namely the Helmholtz
energy calculation, depends on the thermodynamical model used.
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Square-well equation of state

The mixing rule (29) is introduced into the following equation of state,
which is based on the assumption of a square-well potential for the inter-
molecular interaction (Deiters, 1981, 1982a)

46— 3§  Rbe
(1-¢)f Vek

x(hole)Texp() ~1) + £ X e (e~ 1))

An(Vy, T, X) = RTcc,

C
+ Y x,(A4p; (Ve , T)+RT In x;) —RT In V, (33)

£= f—‘gp, ¢y = 0.6887, 7= KL

with p =
p €

b
V.’
and ho(c) = 7.0794046(1 — 0.697816(c — 1)*)".

Here, the integrated form of the equation of state, i.e., the Helmholtz energy
equation is given. The attractive term of this equation is identified with eqn.
(13). Into the repulsive part of eqn. (33) quantum corrections can be
introduced (Deiters, 1983b): they do not interfere with the new mixing rule.
The terms A_;(V.., T) denote Helmholtz energy contributions of the pure
components of the mixture in the reference state, i.e., at the very large
volume V! in the perfect gas state. The Helmholtz energy eqn. (33) contains
several universal constants (c,, pj,;) and auxiliary functions, which have
been explained in the original publications.

The following mixing rules are used

C=X.C11 + X3¢ (34)
b = x12b11 + 2x1.X2b12 + X§b22 (35)

Equation (29) in connection with eqns. (27), (28), (30) and (16) serves as a
mixing rule for the attractive energy parameter. The combining rules are

€2 = 0(‘11‘22)1/2 (36)
Y

b, = E(bu + bzz) (37)

ol

on Cxn by

The introduction of a third binary parameter, ¥, might be regarded as a step
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in the wrong direction as far as the development of a predictive calculation
method is concerned. In fact, for a mixture of rigid spheres, ¢ should be
equal to 1. Real molecules, however, have softly repulsive potential func-
tions, which may even be non-conformal. Therefore a y value different from
1 may be physically reasonable. When 6, { and ¢ are calculated from
experimental fluid equilibrium data, it is usually observed that { and { are
strongly correlated. At least, for hydrogen-containing mixtures, ¢ can be
predicted by

_ by + (§=1)(byy + by,) (ﬁ)
by + (§ = 1)(byy + by,) \ b

where the first fraction is the ratio of the partial covolumes at infinite
dilution. So it is often possible to use two adjustable parameters only, even if
a ¢ value different from 1 is required.

To demonstrate the superiority of the new mixing rule, we calculated
phase diagrams of several cryogenic mixtures, because for such mixtures the

¥ (39)

P/MPa
120
Hy/CH,

100t f
exponent / &€ T 100 K
X, by .
constant/-/.-'

80+ / variable v

60

40

201

00 02 04 06 08 1.0

x(H,)
Fig. 3. Phase diagram of the hydrogen/methane system: B, A, +, experimental data (Tsang
et al., 1980); curves calculated from eqn. (33) (— — —) vy=3,(---) vy=2, (------ ) Y

density dependent (y = a, eqn. 17), (
Y has been fitted to the experimental data.

) v density and.composition dependent (eqn. 16).
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diameter ratio can become rather large and experimental data for a large
range of densities are available. Unfortunately, it is quite difficult to relate
the success or failure of a phase equilibrium calculation to one element of
the calculation procedure alone: usually the equation of state, the mixing
rules, and the combining rules are tested simultaneously. To produce a
conclusive test of the new mixing rule, we calculated isothermal phase
equilibria of the hydrogen/methane system using four different formulas for
the exponent y, namely

vy=3 (van der Waals rule)

y=2 (weight factors determined by contact surfaces)

v =3(1 — £?)(as eqn. (16), but composition and size dependence neglected)
eqn. (16)

In each case ¢ has been treated as an adjustable parameter. Beyond its
possible physical meaning, a second argument for the fitting of ¢ is that it
compensates eventual shortcomings of the combining rules and eliminates
their influence on the results of the calculations. The same parameter set is
used for all temperatures, of course.

P/MPa
120
>
/7 \\
| H, /CH, _/// \\
100 // \1OOK
ot 1 N
80} /) e

60

40t

201

00 02 04 06 08 10
x(H,)

Fig. 4. Phase diagram of the hydrogen/methane system. ¢ has been calculated from eqn.
(39). For an explanation of symbols see Fig. 3.
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P/MPa
80
. H, /N —~
70 2 / 2 /N
/ \
60 ¢
exponent [ g \ 63.19 K
constant—/
50t
variable
40t \
\
30t
77.55 K
=
20t A
/
] o "
10 /. voy) 110.3 K

00 02 04 06 08 10
x(H,)

Fig. 5. Phase diagram of the hydrogen/nitrogen system: O, A, v experimental data (Streett et
al., 1978); curves calculated from eqn. (33) (— — —) y=2 or 3, ( ) y variable (eqn.
16).

From Fig. 3 it is evident that the mixing rules with constant exponents are
not able to represent the experimental data (Tsang et al., 1980) at high
pressures properly, whereas the density-dependent mixing rules perform
quite well. If the variable exponent is also made concentration- and size-de-
pendent, the results are slightly better than with a solely density-dependent
v. Of course, it is possible to obtain a better representation of the experi-
mental 100 K isotherm with a constant v, if 8, { and ¢ are exclusively fitted
to this isotherm, but then the prediction of the 170 K isotherm deteriorates
significantly.

The close agreement of the y=2 and y=3 isotherms is due to the
adjustable ¢ parameter, which compensates the effect of the exponent to
some extent. Figure 4 shows the results if ¢ is not fitted but calculated from
eqn. (39).

Figure 5 contains several isotherms of the H,/N, system (Streett and
Calado, 1978). Because of the lower densities, the y=2 and the y=3
isotherms (y is adjustable) almost coincide here. Again, the density-depen-
dent mixing rule turns out to be superior.
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P/MPa
200

180+

160}

140t

120t

100+

80t

60t

40! CF, /

20+t 2_methyl_ \\ /—constant

propane

exponent
variable

00 02 04 06 08 10
x(CF, )

Fig. 6. Phase diagram of the tetrafluoromethane/isobutane system. W, o experimental data
(Wisotzki, 1984); curves calculated from eqn. (33) (— — —) y=3, ( ) v density and
composition dependent (eqn. 16).

In the system CF,/isobutane, the critical line of the liquid—liquid immis-
cibility has a positive slope, so that the isothermal phase diagrams show
lower critical points (Wisotzki, 1984). Both isotherms in Fig. 6 are repre-
sented rather well by the calculations with y = 3 and with variable y over a
wide pressure range, but only the calculation with density-dependent mixing
rules describes the behaviour at low pressures at 213 K in accordance with
the experiment (prediction of a critical point), whereas the calculation with
constant exponent fails (prediction of overlap with vapour-liquid equi-
librium).

Lennard-Jones 12 / 6 mixtures

It is possible to numerically calculate the radial distribution functions and
the thermodynamic properties of mixtures of Lennard-Jones particles by
perturbation theory (Fischer and Lago, 1983). Although such a calculation
consumes so much computer time that it is not practical to use within phase
equilibrium calculations, it can still be used to test the predictions of
(modified) one-fluid theory. Table 3 shows the residual Helmholtz energies
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of equimolar Lennard—Jones mixtures at various densities together with the
one-fluid theory predictions. These have been obtained with the same
computer program by setting the energy and diameter ratios to 1 and
replacing all interaction parameters with average values.

The residual Helmholtz energies from pure fluid perturbation theory in
connection with density-dependent mixing rules agree reasonably well with
the results from the direct solution of perturbation theory for mixtures. A
perfect agreement should not be expected for several reasons: the density-
dependent mixing rules do not fully account for the influence of attractive
potentials on fluid structure: furthermore, for the calculation of the variable
exponents, the rigid sphere diameters o;; in eqn. (18) have been set equal to
the Lennard—Jones size parameters, which may not be an optimal choice for
some densities and temperatures. Nevertheless, it is evident from Table 3
that the mixing rules with constant exponents are useful in a narrow density
range only, whereas density-dependent mixing rules can be applied over a
wider range.

As an additional test for the effect of density-dependent mixing rules on
the representation of fluid properties, we have applied the mixing rule (29)
in connection with (21) to an equation of state for the Lennard—Jones fluid,
namely the Nicolas equation (Nicolas et al., 1979). This equation of state is
of the Benedict—Webb—Rubin type and contains 32 coefficients. Since the
original paper does not explicitly give the Helmholtz energy expression, we
present it here for convenience

. 8 ) / ~ L3 DD
An(Vor T.R) =Ry | Ej7'pp'+ L me| D7 e > D(in.)!))
j=1 n=0 Jj=0

c
+ Y x;(An;(V, T)+ RT In x;,) —RT In V, (40)

with p=No?/V and D = 3.
The coefficients p; and p; are simple functions of the reduced temperature,
which can easily be identified with expressions in the original publication.
Again, we have chosen the H,/CH, system as the test mixture and
calculated its phase equilibria at high pressures (Fig. 7). The mixing and
combining rules are the same as before. It is not surprising that the Nicolas
equation does not lead to such a good agreement of calculated and experi-
mental equilibrium states as the square-well equation of state (33): the
Nicolas equation has been designed to fit the PVT properties of the
hypothetical Lennard—Jones fluid, whereas (33) is a semiempirical equation
of state which describes the behaviour of real fluids. However, the Nicolas
equation has been used as an isotropic reference equation of state within the
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Fig. 7. Phase diagram of the hydrogen/methane system. Curves calculated from the Nicolas
equation of state (40): for an explanation of symbols see Fig. 3.

perturbation theory of fluids (Clancy and Gubbins, 1981), and, therefore, its
behaviour with respect to density-dependent mixing rules has some practical
importance.

In Fig. 7 the differences between the equilibrium compositions calculated
with density-dependent mixing rules and the van der Waals rules, respec-
tively, show at very high pressures only. But, as in Fig. 3, three binary
parameters have been fitted to the experimental data, and so Fig. 7 shows
only those differences that cannot be compensated by the adjustable binary
parameters. The differences between the phase diagrams calculated from the
same set of parameters would be very much larger. In this context, it is
interesting to note that the calculation with density-dependent mixing rules
requires smaller deviations of the binary parameters from the Lorentz—
Berthelot rule (e.g. density-dependent, 8 = 1.18; van der Waals, 6 = 1.22).

DISCUSSION

A detailed study of the structure of mixtures of rigid spheres shows that
their radial distribution functions differ by more than only a distance scaling
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factor, so that the van der Waals mixing rules do not strictly hold. But by
assuming a variable exponent in the mixing rules it is possible to take the
dissimilarities of the radial distribution functions into account to some
extent, while the mathematical structure of the one-fluid theory is retained.
So it is relatively easy to introduce the new density-dependent mixing rule
into well-established equations of state for pure fluids. (The application of
density-dependent mixing rules to cubic equations of state is discussed in the
Appendix).

The functional dependence of the variable exponent on density, composi-
tion and size ratios is determined by the shape of the attractive intermolecu-
lar potential. If the new density-dependent mixing rules are to be used in
connection with an equation of state, it is necessary to know the potential
function on which this equation of state is based.

Although the evaluation of the variable exponents from the hard sphere
radial distribution functions is a theoretically rigid procedure, the interpola-
tion functions for y, which have been used in this work, are purely empirical
expressions. The limitations of the Percus—Yevick method, the uncertainties
of numerical integrations, and the resulting differences between the v,
made the development of better interpolation functions impossible: in view
of their influence on phase equilibria, the present set of interpolation
functions seems to be sufficient.

The density-dependent mixing rules lead to a significantly better represen-
tation of phase equilibria and thermodynamic functions in connection with
a square-well equation of state as well as for Lennard-Jones mixtures.
Usually the density-dependent mixing rules improve the calculation of the
vicinity of critical points at high densities: one might say that the density-
dependent mixing rules have a positive influence on the critical lines of
liquid-liquid immiscibilities, gas—gas equilibria, and high-pressure
vapour-liquid equilibria. The application of the new mixing rules to a
number of hydrocarbon mixtures, for which it is superfluous to present
phase diagrams, shows that the influence on low-pressure vapour-liquid
equilibria is only marginal. So there are ranges of pressure and temperature
where the density-dependence of the mixing rules may be safely neglected
(and the validity of the van der Waals rules assumed), whereas, with
equilibria between dense phases, the density-dependent mixing rules may
have a decisive effect.

ACKNOWLEDGMENTS
The author wishes to express his gratitude to Dr. J. Fischer and U.

Heinbuch from the Institut fir Thermo- und Fluiddynamik, Ruhr-Uni-
versitit Bochum, for making available computer programs for the calcula-



287

tion of structural and thermodynamical properties of mixtures of rigid
spheres or Lennard—Jones particles. He also thanks Professor G.M. Schneider
for friendly support of this work. Financial support by the Deutsche
Forschungsgemeinschaft and by the Minister fiir Wissenschaft und For-
schung des Landes Nordrhein-Westfalen is gratefully acknowledged.

APPENDIX
Calculation of densities

The calculation of densities or molar volumes for a given pressure and
temperature is one of the most frequently taken steps in a phase equilibrium
calculation. Because of the density-dependent mixing rules it is not only
impossible to reduce the equation of state (33) to a polynomial in density,
but even the differentiation of (33) in order to obtain the pressure is rather
cumbersome. Therefore, an algorithm is proposed that makes use of the
residual Helmholtz energy only and obtains all other variables by numerical
differentiation.

It is advantageous to perform the calculation in terms of reduced densities

V..

p=—7 (A1)

m

where V. is the smallest physically reasonable molar volume of the fluid
mixture under consideration, so that 0 < p < 1. Usually V_;, is a multiple of
the covolume.
Let a dimensionless residual Helmholtz energy be defined by
1 1

C
a(V,, T,X) = R—]—,Am(Vm, T,X)+InV, - in(ﬁAmi(V,:, T)+In xi)

(A2)

where 4, ,(V,,, T) denotes the molar Helmholtz energy of the pure compo-
nent i in the perfect gas state (very large molar volume V,}) and 4,,(V,,, T, X)
the molar Helmholtz energy of the mixture with the concentration vector X.
Since, in this section, only the density dependence of the Helmholtz energy
is of interest, we shall denote the dimensionless residual Helmholtz energy
by a(p). The pressure and its density derivative can then be written as

o)~ ~(57) e~ 7 757 ) S
0P(p) RT

0p*

da(p) , ,3%(p)
3 — 1+2p % +p (A4)
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The derivatives of a(p) can be replaced by difference quotients:

¥=—21Tp(a(p+8p)—a(ﬁ’—59)) (AS5)
Pa0) _ L (a(p+8p) ~ 2a(p) + alp - B0) (A6)
p 5p

Calculating the density p at the given pressure PP, i.e., solving the equation
P(p) = P°, can be accomplished by Newton’s algorithm

_P(p)-P°

aP(p)
dp

By combining the eqns. (A3)—(A7) the iteration prescription is obtained as

(A7)

p==p((§;—Vm+ %gp(a(pﬁp) —a(p—38p))+ (%)iz(a(pwp) |
~2a(p) + a(p—sp»)(l + £ (alp+8p) —alp—5p))

+(§5)2(a(p+3p)—2a(p)+a(p—6p)))_l) (A8)

For the evaluation of eqn. (A8) it is necessary to calculate three Helmholtz
energies, whereas eqn. (A7) requires only two references to thermodynamic
functions (P(p) and its derivative). If a(p), P(p), and 9dP(p)/dp are
equations of similar complexity, the iteration using eqn. (A8) should execute
slower than the iteration using eqn. (A7) and formal differentiation by a
factor 1.5. But, if, as is often the case, the thermodynamic functions grow
more complicated by differentiation, the iteration by means of eqn. (A8)
may even become faster.

As long as the slope dP(p)/dp is positive, the iteration converges rapidly
towards the nearest solution. If a liquid-type solution is expected, the initial
value of p should be on the liquid branch of the P(p) diagram, namely close
to 1: if a gas-type solution is expected, the initial value should be on the gas
branch and can be calculated from the perfect gas law. If a negative slope is
encountered, the iteration becomes unstable: it must be re-started with an
initial value on another branch than before.

If, during the iteration, the object function P(p) — P° changes its sign, an
even faster convergence can be achieved by using the regula falsi instead of
Newton’s algorithm. The slightly lower convergence order of the Regula falsi
is usually more than compensated by the fact that it requires fewer evalua-
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tions of the object function. The regula falsi does not use the local slope, so
that it is not necessary to calculate a(p) at each iteration step. But, before
switching to the regula falsi, it is important to make sure that there is only
one solution within its searching interval, because otherwise it is difficult to
predict to which solution it will converge.

The best size of the density increment dp depends on the computer. We
have used increment sizes between 10™* and 10~° on a machine with a real
precision of approximately 12 decimal digits.

Application to a cubic equation of state

To demonstrate the effect of density-dependent mixing rules on phase
equilibrium calculations with simple cubic equations of state, we have
applied our mixing rule (29) to the equation of Redlich and Kwong (1949)
and again computed the high pressure vapour-liquid equilibria of the
hydrogen /methane system. We ‘have used the original version of the
Redlich-Kwong equation with the 7~'/? temperature dependence. To make
the relationship between the Redlich—-Kwong equation and the statistical
thermodynamics approach more transparent, we have replaced the usual
attraction parameter of the Redlich—-Kwong equation by a combination of
pair potential parameters

agk = 8Re'0> (A9)
The resulting expression for the Helmholtz energy of a mixture is then
Ap(Vm, T, X) = —=RT(In(1 — p) + 87! In(1 + p))

C
+Y x,(Am(Vi, T)+RT In x,)—RT In V,, (A10)
with p = Vi and T'= g

m

We have fitted the parameters of H, to PVT data in the range 100-200
K; furthermore, we have calculated isothermal phase equilibria only. There-
fore, the problem of choosing the best Redlich—Kwong version (i.e., choos-
ing the best temperature dependence of the attractive term) has little
importance for these calculations.

For the application of the density-dependent mixing rules we have as-
sumed that the Redlich—-Kwong covolume parameter b is equal to four times
the hard sphere volume (excluded volume model): therefore, the relation
between the reduced density variables in eqns. (16)—(18) and (A10) is

_P
=2 (A11)
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Fig. 8. Phase diagram of the hydrogen/methane system. Curves calculated from the
Redlich-Kwong equation of state (A10): for an explanation of symbols see Fig. 3.

Furthermore, we have assumed that the pair potential underlying the
Redlich—-Kwong equation can be approximated by a square-well potential,
so that the mixing rule exponent is given by eqn. (16).

Figure 8 shows the results of the phase equilibrium calculations. Again,
three binary parameters have been adjusted to facilitate comparison with
Figs. 3 and 7. The overall agreement of the calculated equilibrium curves
with the experimental data is quite good, although the calculation yields too
high critical pressures. This behaviour is often observed with cubic equations
of state. Again, the calculation with density-dependent mixing rules turns
out to yield better results in the critical region than the calculation with
fixed mixing rule exponents. It must be pointed out, however, that the
introduction of density-dependent mixing rules into a cubic equation of
state turns it into a non-cubic one, and that the advantage of cubic
equations of state, namely the higher computational speed, is, therefore, lost.

LIST OF SYMBOLS

A Helmholtz energy
a residual dimensionless Helmholtz energy



NRQQS N2 YxRR[W IR OAT

covolume parameter
number of components
anisotropy parameter
radial distribution function
Boltzmann’s constant
number of particles
pressure

equation of state coefficient
contact site fraction
universal gas constant
distance

contact site ratio
temperature
intermolecular potential
volume

quasichemical correction
mole fraction

coordination number

Greek letters

a main density influence on y

Y mixing rule exponent

) increment for numerical differentiation

€ interaction energy parameter

¢ binary covolume correction

0 binary energy correction

§ reduced density (with respect to occupied volume)
P reduced density (with respect to minimum volume)
o interaction diameter parameter

v binary diameter ratio correction

Superscripts

att  attractive

hs  hard sphere

rep repulsive

~ reduced property

+  perfect gas state
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Subscripts

i referred to component i
m  molar property
0 average value
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