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The original Rediich~K wong equation, together with the usual quadratic mixing rules, has
been used to calculate phase diagrams for binary fluid mixtures and to classify them according
to the system of van Konynenburg and Scott. Giobal phase diagrams (maps) showing the
extent of the various phase diagram classes in the space of the Redlich-K wong parameters are
presented. While for molecules of equal size the results are very similar to those known for the
van der Waals equation, the maps become topologically different for molecules of unequal
sizes; some complicated phase diagram classes, which otherwise cover small domains on the
maps or cannot be found at all, become quite important.

INTRODUCTION

The calculation of fluid phase equilibria in mixtures by
micans of equations of state is a well estabhshed and frequent-
ly used method, especially when fluids under elevated pres-

sures are concerned. Almost two decades ago, Scott and van

Konynenburg'- showed that almost afl known kinds of fluid
phase equilibria—vapor-liquid, liquid-liquid, and gas—
gas—can be generated, at least qualitatively, from the van
der Waals equation of state combined with the van der Waals

mixing riles. Only one phase equilibrium type, the so-called

class VI, which occurs in some strongly polar systems, re-
quired special mixing rules. Furman et ¢/.” made a similar
study of a lattice—gas mixture and in extending that work to
van der Waals mixtures Furman and Griffiths® identified
several new classes of phase behavior. Many of these com-
plex classes occur in regions of parameter space in which
special symmetries exist. These findings essentially complet-
ed the knowledge of van der Waals mixtures of equal-sized
components and the results were summarized by van Kon-
ynenburg and Scott® in an extensive review. -

In view of the hundreds of different equations of state
and mixing rules which are in use nowadays, it is rather
surprising that similar investigations for more realistic,
modern equations seem {0 be more the exception than the
rule. Three publications that have to be mentioned in this
context are: | .

——g publication by Clancy, Gubbins, and Gray.® This work
focuses on the influence of polar forces on phase behavior;
it does not include an investigation of all possible phase
diagrams with their computation method.

—a publication by Jackson, Rowlinison, and Lang’ involving
a van der Waals-type equation with an improved repul-

- sion term (hard sphere mixture). It is mostly concerned

- with mixtures of components with rather extreme size ra-
tios. It covers an important, but small part of the total
interaction parameter domain,

—aseries of publications by Mazur and Boshkov**? dealing
with the global phase behavior of Lennard-Jones fluids.
This work involves a systematic and thnrnugh topological
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analysis of global phase diagrams. Most of the published
calculations, however, are concerned with properties of
The knowledge about global phase diagrams and their
relationship to equations of state and mixing rules is, there-
fore, rather sparse. It is the aim of this work to investigate the
global phase behavior of a practically useful equation of
state, giving special attention to mixtures of molecules of
dissimilar size.
For this work, the Redlich-K wong equation’! has been
chmmthcpnnmpalequaﬂmof:tate.Thmathmm-
sons for this choice:
—TheMlch-megeqummhasoﬁmhamumdfﬂren-
gineering applications, and its phase behavior is certainly
of some practical interest.

—This equation of state is simpie and does not create too
many numerical problems,

- —Finally, the Redlich-Kwong equation i3 able to generate

“critical states of binary fluid mixtires in good quantitative
agreement with experimental data. '?
CLASSIFICATYON OF PHASE DIAGRAMS

Description of classes

In order to facilitate the comparison between the behay-
ior of Redlich—-Kwong mixtures and that of van der Waals
mixtures as reporied by van Konynenburg and Scott, we
adopt their classification system. For the reader’s conven-
ience, this system is described here in a very compressed
form.

Phase diagrams of fluid mixtures are classified primar-
ily with respect to the number and topology of the critical
lines. Naturally, critical lines may originate at the critical
points of the pure components; these will be named C, and
C,, with “/” and “k " referring to the substance with the
lower or higher critical temperature, respectively. It is often
convenient to imagine a third critical point C,, at extremely
high pressures. In the terminology of a three-component lat-
tice gas model, where the third species represents “holes,” C,
is a critical point involving component / and holes in the
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absence of species /4, whereas €, isamiﬁmipﬁntinldume-
m:xtur:of!andkmtheahmnfholﬁThen,wdlqgtq!

the system of Scott and van Konynenburg, there are six main
classes (compare Fig. 1):
I an uninterrupted critical line between €, and C,;
Il one critical line connecting C, and C,, another line
going from C,, to a critical endpoint;
I one critical line going from C; to an upper critical
endpoint, another line going from C, to C_;
IV one critical line going from C; to an upper critical
endpoint, a second critical line going from C, - to a
lower critical endpoint, a third line going from €
to an upper critical endpoint.
Hﬂetwnlmportantsuhclmmbedmungumhed
from the topology of the three-phase. (llg or “lig-
wid-liquid-—gas") lines (see Fig. 14, later):
IV (standard type) is a class where an llg curve
conpects the endpoints of the critical lines coming
from C; and from C,.
IV* is a class where an llg curve connects the end-
- pomtsofthccnucalhnumngﬁ‘om C, and-from
Cns
A nnecntmlhnefmmc tnanuppercnnmlmd
- pmnt,anothetcnhcalhnefromc,, tnalmmh-
~ cal endpomnt;
¥I one critical line for the vapor-hqmd ethhna, an-
other line going from a lower critical endpoint to an
upper critical endpoint, and sometimes a third criti-
cal line at high pressures above the second one; the
‘existenrce of additional critical line (C,, toan upper
critical endpoint) has been discussed. '?
It is rather surprising that class VI-like: behavior is

found in recent work on Lennard-Jones mixtures® % in view

of the observation that such behavior is otherwise invariably
associated with mixtures in which strong hydrogen bonding
or other unusually strong or specific orientational forces are
present.'? This conclusion is supported by calculations on
lattice'*'* and other models. '* It may be worth pointing out
in this context that the Lennard-Jones calculations are based
nnapnlynmnmlequaumofmdmmd&maﬁttnm
put:rmmu]atmndata.

T ——

FIG. 1. Schematic representation of the main phase disgram clasaes. O:
pure substance critical point, A: upper critical endpoint, 7: lower critical
endpoint, @: tricritical point, *: double critical endpoint, —: vapor pressure
line, —— critical fine, ---: threa-phase line, U1 four-phase state, .

- Recently an additional phase diagram type, VII, has
been found for Lennard-Fones mixtures of equal-stzed mole-
cules.'® It is similar to class VI, except that the critical lines
originating at C; and C, do not meet, but are conniected by a
three-phase line (as in class V). However, whether the va-
por-liquid critical line connects C; and , or not, is a point of
little practical importance; most real systems exhibiting
clagss VI behavior would decompose because of the high tem-
peratures associated with this critical line.

These classes can be divided inio subclasses by consider-
ing additional charactenistics of phase diagrams, e.g., the
existence of azeotropy or heteroazeotropy (indicated by
adding “~A” or “-H” to the class number). A further subdi-

-vision can be made on the occurrence of temperature or pres-
. sure minima along critical lines. This can be quite important
.. for the construction of isothermal or isobaric equilibrinm

diagrams.butthissuhdiviﬂmisnnttheimmediateobjectuf

- this work.

Under special circumstances the standard classes ITand
III are transformed into the classes II-A*, I11*, HII-A*, and
I1I-A**, The phase diagrams of these classes contain an ad-
ditional critical line running from an upper critical endpoint
to another upper critical endpoint; furthermore, the three-
phase lines meet at a four-phase point. Class II-A® 15 always
associated with azeotropy; there does not seem to be a plain
class I1*. The special subclasses of IH differ from each other
with respect to azeotropy: For III-A* the critical azeotrope
igs on the new critical line, for III-A** it is on the critical line
originating from. C; (Fig. 2), and for plain IIT* there is no
azeolropy.

Itmmportanttumhzct]mtthmdamﬁmﬂonmbasad
on fluid phase equilibria only, solid—fiuid equilibria are not
accounted for.

Boundaries between classes

We have found no evidence for the existence of class VI
(or ¥1I) in Redlich—-K wong mixtures, as would be expected
on the basis of the foregoing discussion. These classes are
therefore left out of the following considerations.

A thermodynamic analysis of the phase diagram classes
shows that the classification into five main classes is not due
to a single { pentavalent} criterion, but that there are at least
Tricritical siates

_Thesuungﬁtnﬁﬁﬁnnisrﬁponsiblefurthedisﬁnc&on
between theclasses [and V,or Il and IV, or [ll and IV*. The

-
ollln g

T——-

FIG. 2. Schematic representation of the phase disgram classes in the sheld
region, For an explanation of symbols see Fig. 1.
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FIG. 3. Tricritical point as transition state between class 11 and IV. For an
explanation of symbols see Fig. 1.

difference between these classes lics in the fact that in one
case the critical points C, and C,, are connected by a critical
line, but in the other case not. The “transition state” woild
be represented by a phase diagram where the three-phase
line connecting the two critical lines in class V, IV, or IV*
shrinks to zero length at a tricritical point (Fig. 3). The
mathematical criterion for a tricritical pointis -

G, =0;,=G, =G, =0. (1)
G, is a shorthand notation for (@'G,,/dx}) .

Double critical endpoints

When the critical lines of a class IV mixture are calculat-
ed it often turns out that there are only two separate critical
lines, rather than three. The critical line originating at C,
passes through a very pronounced pressure minimum before
going to high pressures. If the minimum lies below the three-
phase line, or even at negative pressure, the critical line be-
comes unstabie and appears to be interrupted, thereby pro-
ducing class IV behavior. This means that class IV is often a
distorted class ITI. The transition state between class TV and
class 111 (or II and IV*) is a phase diagram where the criti-
cal line just touches the three-phase line forming a double
critical endpoint (Fig. 4). At adouble critical endpoint there
is a critical phase in equilibrium with another (noncnitical)
phase, and the slopes of the critical line and the three-phase
line are the same. This leads to the following equations for a
double critical endpoint (critical phase denoted by “¢,” aux-

iliary equilibrium phase by “a”):
G3. =G5, =0 (criticality), (2)
pi=pi i=12 (phaseequilibrium}, (3)

S5, S5 —8% —(x} —x{)S¢
Vi, Vo—Va—(x =xX)V:
The notation for the derivatives S, , 5., , V., and V., is anal-

(slope critenion ). (4)

T i

FIG. 4. Critical double endpoint as transition state between class and IV.

For an explanation of symbols see Fig. 1.
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ogous to that for G,, . These derivatives must be calculated at
constant pressure and temperature. A method of computa-
tion is given in the Appendix.

Zero-temperature endpoints

The classes I and IL, or IV and V, differ in the existence
of a liquid-liguid critical line, which goes from high pres-
sures to an upper critical endpoint. It is difficult to give &
mathematical criterion for the existence of such a critical
line. For the transition state between class I and class II one
might suggest a phase diagram where the low-temperature
critical endpoint has a temperature of zero. Since at this tem-
perature the pressure of the three-phase state llg would also
be zero, the molar volume would converge fo the covolume.
Under these cirumstances only the atiractive term of the
equation of state contributes to the curvature of G, vs x,.
The zero-temperature endpoint is then defined by

G, =6, =0 at PT-0. (5)
Computational details are given in the Appendix. This crite-
rion is not completely satisfactory since it is highly hypo-
thetical. Crystallization will put an end to fluid phase equili-
bria long before the zero-temperature endpoint is reached.
Therefore criterion (5) cannot be used to predict the practi-
cal existence of a liquid-liguid critical line; it can, of course,
be used to exclude it.

Stability

The equations given above represent only the necessary
conditions for the calculation of boundaries between regions
in the giobal phase diagram. Not all solutions to these equa-
tions are acceptable tricritical states, double critical end-
points, etc.; The following stability criteria must also be jm-
posed in order to identify the physically meaningful
solutions:

—thermal stability: 7> 0. (6)

This 1s inherent in the Redhch——Kwong equation.
—Mechanical gtabﬂ:ty: P>0(7) . (7)
Ay >0 {8)

A 5, may vanish only at the critical points of the pure sub-
stances and in the case of critical azeotropy.

—Jocal diffusion stability: G, >0, {9a)
(for tricritical states: G, >0). {9b)
Fluids disobeying this rejation are unstable against con-
centration fluctuations,

—Global diffusion stability:
X5 — ) + x5 (g — ) >0, (10)

This criterion compares the molar Gibbs energy of an auxil-

iary phase with the extrapolated value from a tangent to the
critical state. The above relation must hold for all mole frac-
tions x7 -u; is evaluated at the critical mole fraction x}, and
u® at x7. Fiuids disobeying this relation are metastable
against phase separation.

Mechanically unstable states were always immediately dis-
carded by our computer programs. Many of the following

J. Cham, Phys., Vol. 80, No. 11, 1 Jung 1088
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diagrams contain states that are unstable or metastable with
respect to diffusion, and these are marked as such. It is easier
to understand the relationships between different tricritical
or double-endpoint lines if their unstable paris are shown,
too. This is also true of the critical lines themselves where
features, such as the crossing and exchange of bran

that occur in nnstabie parts of the phase diagram have im-
portant consequences on the stable phase behavior.

EQUATION OF STATE AND MIXING RULES
The Redlich-Kwong equation of state is used with its

nngmaltemwraluredependenoe
RT al' %
P= — . il
V. —& V¥V (V,.+5b) (b

Its two parameters, @ and b, are considered as guadratic and
linear, respectively, functions of composition:

@ =xi{ag+2%x.8,, + Igﬂzz
b=xb, + x0s, .

(12)
(13)

Although the use of a quadratic mixing rule instead of Eq.

(13) for the covolume is known to improve the quality of
phase eguilibrium predictions,'? we restrict ourselves to the
linear mixing ruie, at least within the present work; the intro-
duction of an additional parameter (b,,) would make the
proper presentation of the resuits too complicated.

It is important to notice that the attraction parameter of
the Redhch—l(wung equation is rdated tu the Boyle tem-
perature T* by -

a=RT"b, (14)

whereas the attraction parameter of the van der Waals equa-
tion is proportional to T%:

d..w =RT*D, | (15)
Hence Eq. (12) is not a van der Waals mixing rule. For
simple equations of state like Eq. (11), the Boyle tempera-
ture is a fixed multiple of the critical temperature.

Equations (12} and (13} contain five subsiance-depen-
dent parameters. As we are interested i the topology of
phase diagrams only, and not in absolute pressure and tem-
perature values, the mixtures are characterized by three di-
mensionless parameter ratios:

(16)

(17)

(18)

The d, are GOIIESWE energy densities dcﬁned by

Thb,
b,b,, | |
If the van der Waals relation ( 15) is inserted into Eqs. (17)-

{19), the parameter definitions of van Konynenburg and
Scott are recovered. Thus it is ensured that £, §, and 4 have

the same physical meaning in this work and in that of van
Konynenburg and Scott.’> -

(19)

dm =

6835

Throughout the following, the subscript “1” refers to
the component with the smaller covolume.

RESULTS
Molecules of equal skze

For mixtures with £ =0 many thermodynamic rela-
tions become much simpler than usual. In that case it is pos-
sible to evaluate the conditions of azeotropy analytically; the
result for the azeotropic mole fraction is

X= = 8y, — @y )
-2+ ay, ,
Hence, if azeotropy occurs, the azeotropic mole fraction is
independent of temperature. Since the mole fraction is sub-
ject to the condition 0 < x7* < 1, the condition for azeotropy
in terms of dimensionless parametersis A »> + £ for positive
azeotropy and A < — ¢ for negative azeotropy.

For mixtures of equal-sized molecules the covolumeis a
constant. This makes it possible to evaluate the conditions
for a zero-temperature endpoint analytically. The result is

t1- 5304 (25))

For A values below the value gmm by Eq.(21) onlyclasses I
and V can occur.

Figure 5 showsa A vsg'mapfor mnturmnfequal-mzed
molecules. As the numbering of the components is arbitrary
in this case, the diagram is symmetric with respect to the
ordinate. This diagram is very similar to the one cbtained by
van Konynenburg and Scott for the van der Waals equation:.
The only stniking difference is the existence of class I'V be-
haﬂﬂrbelowtheabsmssa, this is not obaervedfur the van der
‘Waals equation.

There are three tricritical lines in Fig. 5: one at positive
£, one at negative §, and one coinciding with the ordinate.
The vicinity of the intersection point of these three lines has
been called the shield region by Griffiths and co-workers*/*:
here the special clasges IT-A*, [TI-A*, and ITI-A** can be
found (but not IIT*}. This intersection point, however, does
not mark a critical state of higher order; the three fricritical
mole fractions are different, and furthermore the tricritical
state on the vertical line is at a different pressure, too. :

The two outer tricritical lines become metastable above
A values of approximately (.34 _ The limits of stability are
tricritical endpoints. They also mark the ends of the bound-
ary lines of the shiekd region (lines of coexistence of a critical
phase and twononcritical ones ). These lines have been omit-
ted in Fig. 5; for a more detailed description of the shield
region see Refs. 3--5 and 8.

In the diagrams presented here tricritical lines and dou-
ble-endpoint ines terminate for two reasons: for physical
reasons (e.g., because the pressure becomes zero) or for
technical reasons (¢.g., because rounding errors increase for
x, —1 or x, —0, causing the search algorithm to fail ). End-
points due to physical reasons are marked in the diagrams.

' Thetricritical lines and the double-endpoint lines do not
unite, but intersect, thus forming a very narrow domain of
class IV* behavior between them. At the intersection point
the mole fractions x5 and x7, which are associated with the
double-endpoint line, both converge to the tricritical mole

(20)

(21)
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FIG. 5. A vs { map for mixtures of equal-sized molecules (£ = 0.0} bold:
tricritical lines, thin: double-endpoint lines; solid: siable, dotted: metasta-
bk-,dushnd unstablc; - hnd'mhunpﬁatmuﬂmts,ﬂ*hmtﬂmr
nition; -+ --: limits of azeotropy. .

fraction (Fig. 6). Usnally, tricritical pmms are generated
from class IV or IV* phase diagrams by letting the length of
a three-phase line shrink to zero; two critical lines meet at
these tricritical points. At the intersection point, however,
three critical lines and a three-phase line meet (Fig. 7) at a
tricritical point. This is strongly reminiscent of symmetrical
tricritical behavior, though there is no obvious symmetrical
relationship between the interaction parameters. Indeed, the
two boundaries that inzersect at a point in Redlich-Kwong
and van der Waals mixtures coincide in the three-component
lattice gas,™* with the consequent disappearance of classes
IV and IV*, and form a line of such symmetrical tricritical
points which is then the boundary between classes IT and 111

A real fluid exhibiting phase behavior characteristic of
this intersection point would be experimentally interesting

U. K. Deitars and L. L. Pegg: Binary fluld mixture. |
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FIG. 6. Mole fractions associated with tricritical and double-endpoint lines
for mixtures with equal-sized molecules, For an explanation of symbols see
Fig. 5.

since one could study the approach to a tricritical point by
simply changing the temperature of an appropriately pre-
pared system.

For the van der Waals equation this point lies on the
geometric mean line,* and Meijer, '® who suggests the name
van Laar point, has used this simplification to study the criti-
cal behavior in this region analytically.

Finally, we note that the critical lines form a cusp at the
location of a critical azeotrope. This is in accordance with
the findings for van der Waals mixtures. As discussed in
recent literature,® the limits of azeotropy mentioned above
are not the limits of heteroazeotropy for class I11. In analogy
to results obtained for the Lennard-Jones fluid, there exists a
narrow domain of azeotropic behavior (III-A ) between the
beteroazeotropic domain ITI-H and the plain class II1. The
boundary line between III-A and ITI-H is a line of critical
azeotropic endpoints; for Redhch—l(wong fluids it does not
run into the shield region. -

Molecules with similar sixes

In order to demonstrate the phase behavior of mixtures
containing molecules of slightly differing sizes, we have per-

FIG. 7. Symmetrie tricritical point as transition state between class IT and
III. For an caplanation of symbols see Fig. 1.
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1.0

FIG. E.ivsgmapfurmmrﬁmlhmmlumntmf 0.1 . For an expla-
nation of symbols see Fig. 5.

formed calculations at £ = 0.1 and £ = 0.2 (Figs. 8 and 9).
In contrast to mixtures of equal-sized molecules, the tricriti-
cal and doubie-endpoint lines are no longer symmetrical
about the ordinate, but are displaced to lower £ values. The
domains of the different phase diagram classes are arranged
in the same way as before. In the vicimity of the “intersection
point™ of the three tricritical lines there is again 2 “shield
region” where the classes [I-A*, III-A**, etc., can be ob-
served. Again, the outer tricritical lines become metastable
above the shield region.

The intersection point of tricritical line and double-end-
point line at negative { is again a true van Laar point, which
has a topology as in Fig. 7. At positive £, the situation is
different: The intersection point—if it exists at all—is shifted
into or beyond the shield region. The mole fractions of the
double-endpoint line do not converge to the tricritical mole
fraction (Fig. 10). Furthermore, the tricritical pressure
seems to be slightly higher than the double-endpoint pres-
sure. All this indicates that there is no symmetric tricritical
point at positive £. However, the pressure difference is so
small (0.016 55) that it is at the limit of our present numeri-

1.0

05 00 05 . 1.0

-1.0

FI1G. 9. A vs { map for mixtures with covolume mnn§'=ﬂ.2 For an expla-
nation of symbols see Fig. 5. .
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FIG. 10. Mole fractions associated with tricritical and double-endpoint
lines for mixtures with £ = 0.1 . For an explanation of symbols see Fig. 5.

cal resolution. For all studied mixtures with £ > 0, an ex-
tremely narrow domain of class IV behavior extends up to
the shiekl region. The critical endpoints of the phase dia-
grams in the upper portion of this domain are 50 ciose to each
other that they are distinguishiable from symmetric tricriti-
cal states (Fig. 7) only by extreme numerical efforts.

An interesting feature of these mixtures is the existence
of an unstable tricritical line at negative £, With increasing
size difference, this tricritical line grows towards higher ¢
values, but then turns back. In A vs { diagrams (Fig. 9) a
cusp is formed, whereas x, vs { diagrams show a smooth
curve. Beyond the cusp, the tricritical line is metastable; it is
associated with very large molar volumes and with pressures
below the three-phase line.

Molacules with different sizes

From Figs. 11 and 12 it is clear that the A vs £ map looks
rather similar for positive {. However, the left corner of the
kite-shaped figure is changed very much. The tricritical line
forming this corner splits into two branches.- This is also
evident from the x, vs { diagram (Fig. 13). The lower
branch goes from large negative A values towards zero, then
becomes metastable and finaily, through a cusp, unstable.
The upper branch runs from the shield region either towards
an endpoint (Fig. 11} or to very negative £ values (Fig. 12).
Near this corner there are relatively broad domains of class
IV and class IV* behavior adjacent to each other. This seems
to be a contradiction, because IV and IV* differ in the con-
nectivity of critical lines and should therefore be separated
by a tricritical line. However, a close investigation of the
phase diagrams in these domains shows that the two do-
mains are separated by a narrow strip in which a special kind

J. Chem. Phys., Vol. 80, No. 11, 1 June 1888
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FIG. 11. 2 vs { map for mixtures with covolume ratio £=-0.3 . For an
explanation of symbols see Fig. 5.
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FIG. 12. A vs { map for mixtures with covolume ratio £ = 0.3457. For an
explanation of symbols see Fig. 5.
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FIG. 13. Moie fractions associated with the tricritical and double-endpoint
lines in Fig. 12{b}. For an explanation of symbols see Fig. 5.

of phase behavior can be observed which has not been re-
ported in the work of van Konynenburg and Scott (Fig. 14).
The most important feature of this class, which we will refer
to as IV, is a four-phase state. Depending on the curvature
of the criticel line originating at C,,, there are two subclasses:
In the simple case, this critical line runs into a lower critical
endpoint; in the case IV, it touches or penetrates another
three-phase line, thereby generating an additional pair of
critical endpoints. (Strictly speaking, there are different
three-phase lines which might be penetrated; hence several
subclasses should be possible, which differ in the way in
which the critical lines and the three-phase lines are connect-
ed. However, a pursuit of ail the ramifications on the phase
diagram classification system would be beyond the scope of
this work.)

Such a phase behavior could not be found for mixtures
with smaller covolume ratios. In this context, it is interesting
to note that the “three-component Iattice model” of Furman
et al.? contains a domain of four-phase coexistence (termed
“type II"” by the authors) in a part of their global phase
diagram map which corresponds to the area covered in Fig.

T —

FIG. 14. Schematic representation of phase diagrams belonging to sub-
classes of class IV, '
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12(b), though, of course, no size difference occurs in their

The high-volume tricritical line mentioned before is also
present in these systems. P-T phase diagrams with param-
eter sets located close to, but above this tricritical line are of a
distorted class IV behavior, where the critical line from C,
and that from C , seem to cross each other before joining at
still lower pressures. But all these interesting states are phy-
sically unstable or at best metastable,

DISCUSSION

In the case of molecules of equal size, the global phase
diagrams obtained with the Redlich-Kwong equation are
very similar to those obtained for the van der Waals fluid or
for the Lennard-Jones fluid. Not only is the arrangement of
the various domains the same, but also the parameter values

of certain features, e.g., the shield region, seem to be very
- similar. In contrast to recent results for the Lennard-JTones

fluid, we have not found any trace of class VI or class VII

behavior in the vicinity of the van Laar points. Furthermore,

we have shown that several lines appearing in the global
phase diagrams may have physical endpoints and do not al-
ways extend all over the diagram. For the Redlich-Kwong
fluid with quadratic mixing rules for the attraction param-
eters and linear mixing rules for the covolumes, zero-tem-
perature endpoints constitute a nontrivial boundary between
several classes. For molecules of different sizes, the topology
of the global phase diagram changes considerably: new sub-
classes of phase diagrams mntammg a four-phase state were
found. |

It is surprising that such a simple equation of statc as the
Redlich-Kwong equation leads to such a variety of phase
disgram classes, especially when the investigation is not re-
stricted to equal-sized molecules. It must be asked, of course,
how “real” the computed phase diagrams are. In practice the
parameters of an equation of state should reflect molecular
properties and cannot be set to any desired value. It is possi-
ble, however, to simulate a continuously variable binary
mixture by adjusting composition ratios in appropriate ter-
nary or quaternary (quasibinary) mixtures.!®2¢ Therefore
expemnmta]ly realizing tricritical states, four-phase states,
etc. is not g priori unrealistic.

A more important result is, perhaps, that some of the
more unusual phase diagram classes (IV®, IV, ), which are
of negligible importance for mixtures of equal-sized mole-
cules, may become quite important for molecules of different
sizes. The relatively large £ values required to bring about
the special phase behavior are no obstacle: For simple equa-
tions of state, the “cohesive energy density” defined by Eq.
( 19) is proportional to the critical pressure; the parameter {
may therefore be regarded as a ratio of critical pressures. The
combination of large positive £ and large negative 4, which is
required for IV, behavior, can be achieved by mixtures of
water with some heavier hydrocarbons or alkanols; such sys-
tems may even be of technical importance. It may be worth
to note that a few real mixtures which according to their
Redlich-Kwong parameters should belong to class IV, ex-
hibit class VI behavior.

It iz interesting to note that while the symmetric three-
component model of Furman et al.® conteins four-phase
states of “type IL" the van der Waals model of these au-
thors,* which is derived from the three-component model by
changing the mixing entropy function, does not exhibit such
behavior. The binary Redlich-Kwong model of this work,
which is conceptually very close to the van der Waals model,
again contains type II four-phase states, but only for large
size differences and very negative vaiues of 4. For positive &
values or for very high 4 values no such states could be de-
tected. It would be interesting to determine whether the van
der Waals equation shows similar behavior with large size
differences or whether this is actually a consequence of the
equation of state itself. A full comparison of the two equa-
tions of state awaits a more complete study of size-difference
effects in van der Waals mixtures,

At present, it is not quite clear to what extent the ob-
served phase behavior depends on the temperature function
of the equation of state and on the mixing rules (or rather
mixing theory). This will be the object of future investiga-

tions.
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APPENDIX
Conditions for a critical point

The standard thermodynamic formulation of the criti-
cal conditions for a binary mixture, i.e., G, = G;, = 0,is of
little practical use for the computation of critical states be-
cause these derivatives are defined at constant pressure and
temperature whereas the natural variables of the equation of
state are molar volume and temperature. 1t is possible, how-
ever, to transform the above conditions into eguations of a
more useful form by means of Jacobian determinants:

2

¥x
— . {(Al)
AIF

Here A5y, is an abbreviation for
3i+j+ kAm
(ar‘ar.{,ax{) '
If A, is positive ( this is not the case for critical azeotropes!),
Eq. {Al) leads to the critical condition

AIFAJ.: "’Azrx =0. (AZ)

Hf this equation is fulfilled and 4, is positive, the second
critical condition can be transformed into
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A#“% Asydry Ay, =0.

v — 3ys Ay Azy + 345, 4%, —
- (A3)

The Redlich-Kwong equation makes the evaluation of

the critical conditions very easy: All derivatives of the Helm-
holtz energy required in Egs. (A2) and (A3) have the func-
tional form

A -P;fT"I" Q'ng_M (Ad)
where p,; and g, depend on V,, and x, only. If these two
variables are specified, Eq. (A2)-—after insertion of Eq.
(A4)—turns out to be a quadratic equation for 7. With
the critical temperature known, it is possible to evaluate Eq.
{A3). The coeflicients p; and g, are:

R a2y, + b)

- = ~ ,  (AS
Py = + V.. —b)? fav ViV, +b) (A3J)
_ . __2R¥ _ gV, +b)y—ab’

ST AT VeV +5)°
| - (A6)
RE" - Rb”? R .
= , A7
. I Ve +& g"bh2 —abb* — 2a'bb’' + 206"
9’2:— - Fm b}
’ " 20
_2'b’ +ab* ab ' (2 ,.,+3b]_ (ATH)
b(V,+b)  bHV, 4+ b)?

a and b are obtained from the mixing rules (12) and (13).
Their derivatives are:

ﬂ' =-d—2ﬂ-—2fﬂ" _2‘:{2+ﬂ12] {AB}
dx] |
ﬂ'—d—ﬂ_xlﬂ +2{ﬂ11—én] [Ag}
dx,

The derivatives of 5 have analoguous definitions (here: b,,
=4(b,; + by ), hence b* =10).

A recommendable nomerical procedure is to keep x,
fixed and to vary V,, between & and 4 in small steps, each
time calculating 7, and evaluating (A3). A change of sign
indicates that a critical point is near; it can then be deter-
mined more precisely by means of a regula falsi iteration.

Calculation of tricritical points

Whereas the calculation of G,, from Eq. (A1) and Eqgs.
(A4)~(A9) requires only a moderate matkematical effort,
the formula for G,, is already of a tremendous complexity,
and the analytical calculation of the higher derivatives up to
G, is almost hopeless. We have therefore computed the
higher derivatives by numerical differentiation. It is impor-
tant, however, to apply numerical differentiation to the re-
sidual part of G, only, because all derivatives of the ideal
mixing term diverge for x, — I orx, -0, causing a severe loss
of numerical precision. The equations used for the computa-

tion of the Gibbs energy derivatives are
abbreviations:
£ (%) = thRT—- X, In X

—x,nx, (A10)

£, =&, (x; + nk} h: differentation increment,
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G,

= 360& [256(g ., — 28—} —40( g, 2 —8_4)
+(gya—8-)] —x 4x77 (All)
b e L 10248, 20048
—80(g,,—280+8-2) +{8ie—280+8_4)]
+1x,—3+2x‘-", (Al2)
Gs, _
RT m._. [64( g, —8_1) —34(g,2~8_>)
+(E+4-§_4J]—6x“+ﬁx“' (A13)
Cer _ [256(g.,— 2% +g_ )
RT 43!:‘
—68(g, .~ 8 +2_>) + (84a—28+8_4))
+ 24x° + 24x,7 3, (Al4)
These derivatives were used with a Marquardt-type algo-
nthmtolocatetncntlcalstaies

Calculation of double critical endpoints

An expression for the slope of a three-phase line at a
critical endpoint is uniikely to be found in thermodynamic
textbooks, therefore, a short derivation is given,

For a binary fluid mixture, the total differential of the
molar Gibbs energy is given by

dG,= —5,dT+V_dP+ G, dx,. (AlS)
The chemical potentials can be calculated from
B, =G, — (=11 =x,)G, withi=12. {(Al6)

This leads to the following expressions for the differentials of
the chemical potentials:

diy= — (S, + X5, )dT + (V,, + x;¥.)dP + x G, dx
diy = — (S, — %,5,)dT + (¥,, — x,F,)dP— x(G,, dx, .
(A17)

At a critical endpoint two phases, a critical and an auxiliary
phase, are in equilibrium. We postulate now

dut =du® withi=1,2. (A18)

Inserting Eq. (A17) into Eq. (A 18) yields a set of two linear
equations. For the critical phase, G, vanishes, so that no
term containing dx; is left. The terms containing dx? can be
eliminated from Eq. (A18). The remaining terms can be
rearranged into .

dP S5, — 87— (x{ —x1)S¢

dT Ve, — Vo — (x5, —x)V5
This is the slope of the three-phase line at a critical endpoint
in a PT—projection. For a double endpoint, this slope is the
same as the slope of the critical line. Equation (4) is the
mathematical representation of this condition.

Again the problem arises 10 caiculate the derivatives

V. and S, which are defined at constant pressure, from &
pressure-explicit equation of state. In analogy to Eq. {Al),

(Al19)
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these derivatives can also be expressed through derivatives
of the Helmholtz energy

A
V, = ——, {A20)
Ali"
V= —Aim, 2y, V. + AW, (A21)
Sx= _{An: +ATFV:): (m}

5= — Ay + 245, ¥V, + A7 Vit 45 V2,).
{A23)

Calculation of zero-temperature endpoints

As the endpoint temperature decreases, so does the pres-
sure, because the three-phase line cannot deviate too much
from the vapor pressure lines. With 7—0 and P—0, the mo-
lar volume of the liquid phase approaches the covolume b.

Under these circumstances, only the attractive term

within G,,
= ln(l+i)
8T Ve

contributes to its curvature, With ¥, — d, itisonly necessary
to check the curvatnre of a/b with respect to x,

2
: ;jb) —b—(a"b* — abb”® —2a'bb’ +2ab") =0.
1
(A24)

If the mixing rule for the covolume parameter b is linear, as it
is assumed in this work [Eq. (13)], the term containing b *
vanishes, and the expression for the third order derivative is

3

1B — 354~ a"b’ + 2005 ~ 2ab")
1 |

3b' d*{a/b)

A25
b de (A23)

If the second order derivative is zero, the third order deriva-
tive vanishes, too. It is therefore sufficient to evaluate the
second order derivative. For molecules of equal sizes thiscan
be done analytically [see Eq. (21)], but usuaily the numeri-
cal solution of Eq. (A24) presents no problem.
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