Palaeolithic Sites of Crimea,
Vol. 2

KABAŻI II:
THE 70 000 YEARS SINCE THE LAST INTERGLACIAL

Edited by
Victor Chabai, Jürgen Richter and Thorsten Uthmeier

Simferopol – Cologne
2006
Kabazi II, level III/2A is situated within the Crimean Micoquian in the lower part of stratum 11, and corresponds with the Stadial phase Pryluky in the Ukraine (Gerasimenko 2005). This time range is correlated with marine isotopic sub-stage 5b, and is ESR-dated to 82,000±10,000 B.P. Level III/2A is a very thin archaeological horizon which, for the most part, has the thickness of just one artefact or bone. Level III/2A is separated from the lower and upper levels by 10 to 20 cm thick sterile deposits which have prevented the intrusion of finds from other layers (Chapter 1, this volume).

Artefacts are found distributed in two localities within the excavated area; to the very north-west there is a concentration in two squares (И-4 and К-4) which, although separated from the others, are characterised by the highest density of lithics per square with three artefacts each. These stand in contrast to a second group, stretching from the north-east to the south-west of the site, which covers nine squares with an artefact density of between one and two pieces per square (Fig. 16-1). The artefacts are well preserved and the very little sign of post-depositional damage might be attributable to a slight weathering. It is highly likely that the occupation surface has not been excavated in its entirety.

Environment

The vegetation of this Stadial environment was probably characterised by a boreal to south-boreal forest-steppe. In the wooded parts pine was dominant, though birch would also have been numerous on the slope of the Kabazi Mountain. At the site itself smaller herbs and plants were present. The steppe vegetation displayed a high abundance of sedges, and was for the most part mesophytic. The climate was relatively cold and wet (Gerasimenko 1999). *Equus hydruntinus* was abundant and, as in the other levels, was the preferred, and on occasions, probably the only prey to the people hunting in the Kabazi area.
Although comprising only 20 artefacts in total, the small assemblage from this level is nevertheless highly instructive.

Three artefacts were excluded from the analysis due to their small size which prevented a successful allocation to a raw material unit (Weißmüller 1995). The remaining 17 finds were assigned to eight different raw material units whose colours range from light-grey over middle-grey tones to dark-grey or even almost black. The brightness is mat to glossy and there are differently marked inclusions and schlieren which are sufficiently diverse.

Cortex colour is light-yellowish to white. Two RMUs display a white, chalky, and non-weathered cortex which is indicative of nodules stemming from a primary source; cortex indicative of a residual source was observed on one occasion; and for a further two RMUs the source, whether primary or residual, was not discernible. One time the usage of a pebble is proven and two times an allocation to a certain kind of raw material source was due to the lack of cortex not possible (Fig. 16-2). It is likely that the raw material was collected in the vicinity of the site; the next flint outcrops being only a few kilometres away (Chabai 1998b).

All nodules, with the exception of those where this was not ascertainable, were either round or flat (Fig. 16-3).

Fig. 16-1 Kabazi II, level III/2A: distribution of all artefacts subjected to transformation analysis (one artefact not mapped).

Fig. 16-2 Kabazi II, level III/2A: frequency of workpieces, according to sources of raw material.

Fig. 16-3 Kabazi II, level III/2A: frequency of workpieces, according to raw nodule shape.
The sortation of artefacts from level III/2A yielded eight raw material units (RMU); due to the elimination of RMU 4 during the recording process with artefacts redistributed, there remain nine RMUs in the counting, but a total number of only eight (1, 2, 3, 5, 6, 7, 8, 9).

Four of the eight RMUs are represented by only a single artefact, whereas the remaining four RMUs consist of workpieces. Of the latter, two contain four artefacts, and two comprise three and two artefacts respectively (Fig. 16-4).

Although RMUs emerging from surface shaping constitute only one third on the total inventory, they are nevertheless the dominant feature of this level. Even though surface shaped tools are not present in the assemblage, surface shaping is still indicated by the flakes left on-site (Fig. 16-5). The only formal tools present on-site are three simple side-scrapers and one double side-scraper; two of which were imported, and two were produced on-site (Fig. 16-6).

The single pieces: Bw, Tw and Cw

Half of the RMUs from level III/2A are single pieces (RMU 1: Bw; RMU 2 and RMU 3: Tw; RMU 5: Cw).

Two of the four single pieces are scrapers: RMU 2 is a simple side-scraper on a blade without cortex; and RMU 3 is a simple side-scraper on a flake which still displays some cortex at its basal end. RMU 1 is a short unretouched blade without cortex. RMU 5 comprises an earlier prepared core, there being neither signs of decortication nor of further flaking having occurred on-site. Therefore, it must be assumed that this artefact was prepared elsewhere and carried to the site, where it was then deposited without further usage (Fig. 16-7, RMU 1, 2, 3, 5).

Blank production from a core: Cb

RMU 6 comprises an imported, prepared and partly decorticated core (Fig. 16-7, RMU 6) from which a short sequence of blank production took place on-site. A modification of blanks to tools is in this case not provable, but cannot be entirely excluded; tools having been exported together with their corresponding cores. There is no indication of Levallois technology (Boëda 1993, 1994, Bordes 1980).
Fig. 16-6 Kabazi II, level III/2A: frequency of tools (pieces with use-retouch are not counted as formal tools).

<table>
<thead>
<tr>
<th>RMU</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF-SITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Import</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON-SITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A Blank Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B Correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Modification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformation Section</td>
<td>Bw</td>
<td>Bw</td>
<td>Tw</td>
<td>Tw</td>
<td>Cb</td>
<td>Cb/f</td>
<td>Nb/f</td>
</tr>
</tbody>
</table>

Fig. 16-7 Kabazi II, level III/2A: transformation analysis.
Production of surface shaped tools: Cb/f, Nb/f and Cm/f

As mentioned previously, the production of surface shaped tools is the main feature in this level, and is realised in three different transformation sections (RMU: 7 Cb/f; 8 Nb/f; 9 Cm/f). These three RMUs comprise twice the number of pieces as in the total of all other RMUs.

Pieces belonging to RMU 7 show that a partly decorticated preform was imported which must have been used on-site; its working edge having been corrected in a second bout of surface shaping. Finally, this tool was exported when the group left the site. RMU 8 (Nb/f) represents the only case in this level in which a raw nodule was imported. It was decorticated on-site and modified to a surface shaped tool which, ensuing initial usage, was also exported. Pieces belonging to RMU 9 show once again that a partly decorticated preform was imported to the site. However, in this case no further preparation was conducted, and only surface shaping is indicated by remaining flakes. Two of these flakes without cortex were retouched and modified to scrapers. On the one hand, a double side-scrapers, and on the other, a simple side-scaper were produced. Whereas the scrapers were left behind at the site, the surface shaped tool was exported (Fig. 16-7, RMU 7, 8, 9).

Conclusion

Although small in size, the assemblage from Kabazi II, level III/2A presented in this paper is instructive in that it shows how different the multi-functional-ity within a core reduction system on the one hand, and a surface shaping system on the other, can be. For this reason, it is important that we differentiate between at least three stages of functional determination: The first stage correlates with the completely undetermined raw nodule, which – to all intents and purposes – can be worked to absolutely anything. In a second stage there is a preform, which tends to surface shaping, or there is an initial core, which tends to blank production. At this point, it should be mentioned that the division is more a systematical than a technical one. For example, the surface shaped tool can be used as a core and, in the same way, but probably with a little more expense, a core in an initial state can also be transformed into a surface shaped tool. Naturally, surface shaped tools can be used as a source of blanks; and big blanks can, of course, also serve as cores. However, from a certain point in the sequence, the tool must remain a tool, and the core must remain a core. This may be referred to as the stage of complete determination. Tools and cores left behind at the site can also be designated as completely determined, owing to the simple fact that their producer had abondoned them. Of course, this is very much the decision of an individual knapper, and can vary from one situation to the next, according to the availability of fresh raw material and other circumstances.

Therefore, the imported artefacts from level III/2A consist of previously determined pieces, i.e. two scrapers, a blade and a core, as well as three less determined objects, namely two preforms and a core, and a completely undetermined object, a raw nodule. Whereas the previously determined objects show that a previous image of the task at hand had been envisaged, the presence of less determined or indeed completely undetermined objects enables an individual adaptation of the tool assemblage. The adaptation in this particular case seems to be indicated by the switch from a core reduction system to a surface shaping system. All the imported, previously determined artefacts descend from a blank production system; two of the three less well determined objects were used for surface shaping. The completely undetermined nodule was also exploited within a surface shaping concept. This, together with the fact that those tools left behind were normal scrapers, whereas all the surface shaped tools were exported for further usage, shows that in this level a transition between a more blank orientated and a more surface shaping based system took place. This in mind, the curious RMU 5, with its imported but unused core, begins to make more sense. This piece, already too determined to serve as a preform, was superfluous; its technical possibilities not suited to the task at hand. Indeed, experiments show that surface shaped tools are especially efficient for dismembering or skinning a carcass (Walker 1978; Jones 1980) and so probably used in the butchering process of large mammals (Hoffecker 2002).

To conclude, in level III/2A a small group of people butchered the animals killed during a hunt in the near vicinity of the site. However, and as indicated by the very low bone density, this butchery activity was of an only coarse nature. This observation, coupled with the fact that meat carrying parts of the animals are missing, suggests that the carcasses were prepared for transportion to a different location at which skinning, dismemberment, and finally
consumption were to take place. Scrapers are often associated with the working of wood (Beyries 1988; Anderson-Gerfaud 1990; Schelinskii 1992, p. 202). Naturally, these tools presuppose the availability of this material, but possibly also the presence of meat (Schelinskii 1981; Hoffecker 2002, p. 102-103), i.e., branches from nearby pine trees may have been transformed into simple carrying-constructions for animal parts. Consequently, being less suited to the further dismembering process than the surface shaped tools, the scrapers were left behind at the site, with only the on-site produced bifacial tools, as well as one core serving as a source for sharp flakes, being carried to the next location. However, and without trace wear analysis, it cannot be explicitly ruled out that the scrapers were not integrated into butchering activities; this said, at least one surface shaped tool was used on-site, and it is very likely that others were as well.

Thus, Kabazi hunters did not use multifunctional tools in an opportunistic way, just because these happened to be multifunctional. Rather, the tools from Kabazi II, level III/2A refer to preferred aspects and focuses within the functional range of possibilities of core reduction and surface shaping.

Abstract

КАБАЗИ II, ГОРИЗОНТ II/2А: СКРЕБЛА И ДВУСТОРОННИЕ ИЗДЕЛИЯ – РАЗЛИЧИЯ В ИСПОЛЬЗОВАНИИ МНОГОЦЕЛЕВЫХ ОРУДИЙ

A. Maier