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Abstract 

Rationale― Inflammation and thrombosis are related via interactions between 

leukocytes, platelets, the vasculature and coagulation system. However, the 

mechanisms behind these interactions remain poorly understood.  

Objectives― We have investigated the effects of the well-known pulmonary 

inflammation induced by silica for the development of peripheral thrombogenicity 

in a hamster model of thrombosis. In addition, the consequences of pulmonary 

macrophage and circulating monocyte and neutrophil depletion on the 

thrombogenicity were investigated. 

Methods― Silica particles (2-200 µg/hamster) were intratracheally instilled, and 

experimental thrombosis in photochemically induced femoral vein lesions was 

assessed 24 h later, in association with cellular infiltration in the lung.  

Measurements and Main Results― Intratracheally instilled silica particles (20 

and 200 µg/hamster) triggered pulmonary inflammation, coupled to stimulation of 

peripheral platelet-rich thrombus formation. Both the selective depletion of lung 

macrophages by i.t. administration of clodronate-liposomes, and the combined 

depletion of circulating monocytes and neutrophils by i.p. injection of 

cyclophosphamide significantly reduced silica-induced influx of macrophages and 

neutrophils in BAL, and reduced peripheral thrombogenicity. Silica-induced lung 

inflammation was accompanied by increased neutrophil elastase levels in BAL and 

also in plasma. Specific neutrophil elastase inhibition in the lung did not affect lung 

inflammation but reduced peripheral thrombogenicity.  

Conclusions― These findings uncover pulmonary macrophage-neutrophil cross-

talk releasing neutrophil elastase into the blood circulation. Elastase, triggering 
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activation of circulating platelets, may then predispose platelets to initiate 

thrombotic events on mildly damaged vasculature. 

Abstract count: 226 
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Introduction 

Both inflammation and thrombosis play a central role in the development of 

atherothrombosis, the underlying cause of approximately 80 % of all sudden 

cardiac deaths 1;2. There is growing evidence of extensive cross-talk between 

inflammation and thrombosis, not only for inflammation leading to activation of 

thrombotic events, but also showing that thrombosis affects inflammatory activity. 

During these processes, a multitude of interactions are triggered, involving 

different types of cells such as platelets, leukocytes, endothelial cells and the 

coagulation/anti-coagulation cascades 2;3. 

Upon platelet activation in pathological vascular conditions, 

polymorphonuclear leukocytes (PMN) may adhere to the growing thrombus, 

amplifying the thrombotic process by additionally activating platelets 4. Neutrophil 

adhesion can be accompanied by monocyte/macrophage accumulation, in turn 

amplifying the inflammatory process 2. Platelet-leukocyte interactions further 

support vascular inflammation 5;6. These inflammatory cellular interactions may 

take place not only in the systemic circulation, e.g. after contact with infectious 

agents, such as in sepsis 7, or with non-self cells, such as during transplant 

vasculopathy 8, but they also occur in the lung following exposure to environmental 

insults, such as particulate air pollution 9;10. In this context, it has been reported 

that pulmonary exposure to particles triggers fibrinogen elevation 11;12, enhances 

atherosclerosis 13 and increases the risk for platelet-rich thrombosis 14-18. 

We have recently shown that diesel exhaust particles (DEP) cause lung 

inflammation accompanied by the development of a peripheral vascular 

thrombogenic tendency due to platelet activation. We have also shown that 
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histamine release by pulmonary mast cells plays a major role in triggering these 

processes 14;18. 

Experimentally, acute exposure to silica particles produces sustained 

pulmonary inflammation in animal models, characterized by increased 

macrophage and neutrophil numbers and by damage of lung tissue 19. Therefore, 

this well-established model appeared to be appropriate for the study of the 

possible consequences of pulmonary macrophage and neutrophil inflammation for 

extrapulmonary events, such as vascular inflammation and platelet activation. 

The hypotheses of this study were that 1) instilled silica particles enhance 

peripheral vascular thrombosis in a manner similar to that by other particles 

studied previously 14-18; 2) thrombotic effects depended both on pulmonary 

macrophages and neutrophils. These questions were studied by depleting animals 

from macrophages or neutrophils by clodronate or cyclophosphamide 

pretreatments, respectively. Finally, the roles of neutrophil elastase, as mediator of 

platelet activation by neutrophils 20;21, and histamine were also assessed. 

 

 

 

 

 

 

 

 



 

 

5

 

Material and Methods 

This project was reviewed and approved by the Institutional Review Board 

of the University of Leuven and experiments were performed in accordance with 

protocols approved by the Institutional Animal Care and Research Advisory 

Committee. 

 

Silica particles  

Crystalline SiO2 (Min-U-Sil), kindly provided by Prof. B. Fubini (Facoltà di 

Farmacia, Università di Torino, Italy), was suspended in sterile pyrogen-free saline 

(NaCl 0.9 %). The median size of particles was around 2 µm, as measured by 

means of a Coulter LS particle size analyzer at the VITO (Vlaamse Instelling voor 

Technologisch Onderzoek), Belgium. 

To minimize their aggregation, particle suspensions were always sonicated 

(Branson 1200, VEL, Leuven, Belgium) for 15 min and vortexed immediately (< 1 

min) before their dilution and prior to intratracheal administration. Control hamsters 

received saline. 

 

Intratracheal instillation of particles 

Male or female hamsters (Pfd Gold, Iffacredo, Brussels, Belgium) weighing 

100-110 g were anesthetized with sodium pentobarbital (60 mg/kg, i.p.). The 

tracheal zone was shaved and desinfected with ethanol (70%), and the trachea 

was exposed for the intratracheal (i.t.) administration of 120 µl of saline or silica 

particles (2, 20 or 200 µg/hamster), as well as for the i.p or i.t. pretreatment of 

hamsters with cell-depleting or elastase inhibitor agents.  
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Experimental thrombosis model 

Twenty-four hours after i.t. instillation of particles or saline, in vivo 

thrombogenesis was assessed, as recently described 17;22. Following induction of 

anesthesia, hamsters were placed in a supine position on a heating pad at 37°C. A 

2F venous catheter (Portex, Hythe, UK) was inserted in the right jugular vein for 

the administration of Rose Bengal. Thereafter, the right femoral vein was exposed 

from the surrounding tissue and mounted on a transilluminator. Mild endothelial 

injury was produced in the hamster femoral vein 17;22 and thrombus 

formation/disappearance were monitored for 40 min under a microscope at 40 

times magnification 17;22. The size of the thrombus was expressed in arbitrary units 

(A.U.) as the total area under the curve, when plotting light intensity against time 

23. The hamsters were euthanized at the end of the recording. 

 

Bronchoalveolar lavage (BAL) fluid analysis 

Twenty-four hours following the i.t. instillation of particles or vehicle, 

hamsters were killed with an overdose of sodium pentobarbital. The trachea was 

cannulated and lungs were lavaged three times with 1.5 ml of sterile NaCl 0.9%. 

The recovered fluid aliquots were pooled. No difference in the volume of collected 

fluid was observed between the different groups. BAL fluid was centrifuged (1,000 

g x 10 min, 4°C). Cells were counted in a Thoma hemocytometer after 

resuspension of the pellets and staining with 1% gentian violet. The cell 

differentials were microscopically performed on cytocentrifuge preparations fixed 

in methanol and stained with Diff Quick (Dade, Brussels, Belgium). The 

supernatant was stored at - 80 °C until further analysis.  
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Preparation of liposome-encapsulated clodronate and depletion of alveolar 

macrophages 

Liposomes composed of phosphatidylcholine and cholesterol (molar ratio, 

6/1), with or without added dichloromethylene diphosphonate (clodronate, a gift of 

Roche Diagnostics GmbH, Mannheim, Germany), were produced as previously 

described 24. Briefly, 86 mg of phosphatidylcholine and 8 mg of cholesterol were 

dissolved in 10 ml of chloroform and dried to a film by low vacuum rotary 

evaporation. The lipids were rehydrated in 10 ml of saline or in a solution of 2.5 g 

of clodronate in 10 ml of saline and incubated at room temperature. The liposome 

suspension was then diluted in 100 ml of saline and centrifuged at 100,000 x g for 

30 min to remove free clodronate, after which liposomes were resuspended in 4 ml 

of saline. 

Alveolar macrophage depletion was achieved by the i.t. instillation of 150 µl 

of a liposome-encapsulated clodronate suspension (CL), as described by Koay et 

al. 25. Control hamsters received empty (saline-containing) liposomes (SL). Then, 

24 h later, hamsters were i.t. instilled with silica particles (20 µg/ hamster) or 

saline. Still 24 h later, BAL was done and thrombosis experiments performed as 

described above, i.e. 48 h after SL/CL administration. The extent of lung 

macrophage and circulating monocyte depletion was assessed by differential cell 

counting in BAL and blood, respectively. 

 

Depletion of neutrophils and circulating monocytes 

In vivo depletion of circulating monocytes and neutrophils was achieved, as 

described by Lardot et al. 26, by a single i.p. injection of cyclophosphamide (CP, 20 

mg/animal suspended in 100 µl of sterile saline) 3 days prior to the administration 

of silica particles or saline. Twenty-four hours after the i.t. administration of silica 
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particles or saline, i.e. 96 h after CP administration, the extent of cell depletion was 

assessed in the BAL and blood by differential cell counting. Platelets were counted 

on a CELL-DYN 1800 (Abbott Laboratories, Abbott Park, Illinois, USA) and 

thrombosis experiments were performed as described above. 

 

Histamine determination in BAL and in plasma 

Histamine concentrations in BAL and in plasma were determined by means 

of a commercially available radioimmunoassay kit (Immunotech, Marseille, 

France). The lower limit of detection of this assay was 0.2 nM. 

Venous blood samples collected from the abdominal vena cava on EDTA 

(5mM) were centrifuged (1,000 g x 10 min, 4°C) and plasma samples were stored 

at - 80 °C. 

 

Elastase determination in BAL and in plasma  

Neutrophil elastase activity in BAL and in plasma was determined using the 

highly neutrophil elastase specific chromogenic substrate N-methoxysuccinyl-Ala-

Ala-Pro-Val p-nitroanilide (Sigma, St. Louis, MO) 27. Briefly, samples were 

incubated in 0.1 M Tris–HCl buffer (pH 8.0) containing 0.5 M NaCl and 1 mM 

substrate for 24 h at 37 °C. After incubation, p-nitroaniline was measured 

spectrophotometrically at 405 nm and absorbance, corrected for baseline activity, 

was taken as an index of neutrophil elastase activity. 

 
Elastase inhibition during lung inflammation and thrombosis 

To assess the role of neutrophil elastase on lung inflammation and 

peripheral thrombosis, hamsters were i.t. instilled with methoxysuccinyl-alanyl 

alanyl-prolyl-valine-chloromethylketone (MeOSuc-AAPV-CMK, Calbiochem, 

Darmstadt, Germany) at a dose of 250 µg/animal 10 min before silica particle or 
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saline administration. Lung inflammation and thrombosis were assessed as 

outlined above. 

 

Statistics  

 Data are expressed as means ± SEM. Comparisons between groups were 

performed by one way analysis of variance (ANOVA), followed by Newman-Keuls 

multiple range tests, two-way ANOVA, followed by Bonferroni multiple range tests 

or unpaired Student’s t-tests, as indicated. P values <0.05 are considered 

significant. 

The experiments were carried out over a number of weeks. The total 

numbers of hamster for the control groups and for each treatment group represent 

pools of hamsters over the entire experimental interval. 
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Results 

 

Silica particles induce lung inflammation and enhance peripheral 

thrombosis 

Following i.t. instillation of saline or silica particles, cells in BAL consisted 

mainly of macrophages and polymorphonuclear neutrophils (PMN), the remainder 

of the cells (<1%) being lymphocytes. The i.t. instillation of silica particles resulted 

in a marked cellular influx at doses of 20 and 200 µg/hamster but not at 2 

µg/hamster (Figure 1). Macrophages increased to a comparable degree at 20 

µg/hamster (4-fold, p<0.05) and 200 µg/hamster (5 fold, p<0.01) (Figure 1a). 

However, PMN numbers increased 30-fold at 20 µg/hamster (p<0.05) and 230-fold 

at 200 µg/hamster (p<0.01) (Figure 1b).  

The i.t. instillation of silica particles enhanced the thrombus mass formed in 

a mildly photochemically injured hamster femoral vein 2.7-fold at 20 µg/hamster 

(p<0.05) and 3.7-fold at 200 µg/hamster (p<0.001) (Figure 2), i.e. at these doses 

that also triggered measurable lung inflammation. 

 

Alveolar macrophage depletion reduces the silica-induced peripheral 

thrombogenicity 

 The i.t. pretreatment of control hamsters with empty (saline-containing) 

liposomes (SL) did not significantly affect the baseline amount of lung 

macrophages, as measured in BAL (Figure 1a and 3a). Similarly, i.t. pretreatment 

of hamsters with SL did not affect the macrophage infiltration induced by silica 

particles (20 µg/hamster) (Figure 1a and 3a). Correspondingly, pretreatment with 

SL had no effect on baseline or silica-induced PMN numbers in BAL (Figure 1b 

and 3b). 
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 In contrast, the i.t. administration of clodronate-liposomes (CL) resulted in a 

reduction by 70 % in the baseline macrophage numbers (SL, n = 4) in BAL fluid 

compared to saline-liposomes (n = 4, p < 0.001) (Figure 3a). Pretreatment with CL 

did not block the silica-triggered macrophage lung infiltration entirely, but after 

silica exposure, macrophage numbers in CL-pretreated hamsters only reached 

values comparable to baseline values in controls (Figure 3a). CL-pretreatment did 

not deplete monocytes from the circulation: monocyte numbers in circulating blood 

were similar after SL-pretreatment (2.6 ± 0.9 x105/ml blood, n=4) and CL-

pretreatment (2.8 ± 0.6 x105/ml blood, n=4) at the time of thrombosis induction. 

However, pretreatment with CL reduced significantly the influx of PMN in BAL fluid 

after i.t. silica (Figure 3b). Because circulating numbers of PMN were not affected 

by the i.t. pretreatment with CL (PMN numbers after SL-pretreatment: 1.6 ± 0.4 

x105/ml blood, n=4; after CL-pretreatment: 1.5 ± 0.3 x105/ml blood, n=4, p=NS), 

these findings implicate that PMN-influx in the lung is secondary to the activation 

of pulmonary macrophages 28;29, which attract fewer PMN, when reduced in 

number. 

Whereas no effect of pre-treatment with SL or CL was observed on 

peripheral thrombus formation in saline-treated hamsters, the pretreatment of 

hamsters with CL strongly reduced the prothrombotic effects induced 24 h after 

the i.t. silica particle administration (Figure 4). 

 

Depletion of systemic PMN and monocytes inhibits peripheral 

thrombogenicity 

Figure 5a shows that, in the saline-treated group, the number of 

macrophages in BAL was not affected by pretreatment with cyclophosphamide 

(CP), whereas the expected increase in the numbers of macrophages following i.t. 
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silica instillation was completely inhibited. Following i.p. CP injection, the low PMN 

numbers in saline-treated hamster lungs were unaffected. However, the PMN 

influx caused by silica particle administration was strongly reduced after CP 

pretreatment (Figure 5b). 

Without CP pretreatment, the mean numbers (± SEM) of total blood 

leukocytes in the saline and silica-treated groups were 20 ± 2 x105/ml blood (80 % 

lymphocytes, 12 % monocytes and 8 % neutrophils) and 22 ± 3 x105/ml blood (75 

% lymphocytes, 13 % monocytes and 12 % neutrophils), respectively, i.e. silica 

administration by itself had no impact on circulating monocyte and PMN numbers 

(p=NS) 24 hours later. Cyclophosphamide pretreatment led to an 80 % reduction 

in circulating leukocytes in both the CP + saline group (3.7 ± 0.5 x105/ml blood) 

and the CP + silica group (4.5 ± 0.6 x105/ml blood). There were no quantifiable 

neutrophils among the circulating leukocytes remaining after cyclophosphamide 

pre-treatment. Circulating monocyte numbers in the saline-treated group (0.25 ± 

0.03 x105/ml blood, n=4) were not different from those in the silica-treated group 

(0.24 ± 0.03 x105/ml blood, n=4) but they were reduced 10-fold, as a consequence 

of the CP-pretreatment.  

Platelet numbers did not change significantly after pretreatment with CP 

(216 ± 15 x103/µl blood in the saline group; 220 ± 5 x103/µl in the CP + saline 

treated group; 195 ± 19 x103/µl blood in the silica group; 178 ± 30 x103/µl in the CP 

+ silica group). 

CP pre-treatment did not affect the extent of thrombosis in saline-treated 

hamsters, despite the strong reduction of circulating leukocyte numbers. However, 

pretreatment with CP significantly reduced the silica-induced stimulation of 

thrombosis (Figure 6).  
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Histamine and elastase determination in BAL and in plasma 

Silica particle administration had no effect on the concentrations of 

histamine (mean ± SEM, n = 4-5) in BAL (2.5 ± 0.9 nM vs. 2.2 ± 0.7 nM, in 

controls), and these levels were not affected by pretreatment with CL (2.4 ± 0.8 

nM) or with CP (2.5 ± 0.7 nM). Similarly, in plasma, no effect of silica on histamine 

levels was observed (26.6 ± 6.7 nM vs. 25.5 ± 8.0 nM, in controls), neither after 

pre-treatment with CL (29.5 ± 3.6 nM), nor with CP (24.3 ± 2.5 nM). 

Silica particles induced a significant increase in neutrophil elastase (NE) 

activity in BAL and in plasma, compared to control hamsters. Pretreatment of 

hamsters with CL or with CP significantly reduced this increase in BAL and in 

plasma (Figure 7). 

 
Neutrophil elastase inhibition in lung inflammation and thrombosis  

The i.t. pretreatment of control hamsters with MeOSuc-AAPV-CMK did not 

significantly affect total cell numbers in BAL (figure 8a and 8b) nor the thrombosis 

in vivo. No effect of this pretreatment was observed on the silica-induced increase 

of macrophage or PMN numbers in BAL (figure 8a and 8b). However, the i.t. 

administration of MeOSuc-AAPV-CMK partially but significantly mitigated the 

silica-induced elevation of the thrombotic response (figure 8c). 
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Discussion 

We have demonstrated that the i.t. instillation of silica particles in hamsters 

leads to significant dose-dependent increases of macrophage and neutrophil 

numbers in BAL, and the development of a prothrombotic tendency in circulating 

blood. By specifically depleting lung macrophages with clodronate-liposomes, we 

found that both the influx of PMN in BAL and the peripheral thrombotic tendency 

were abrogated. The depletion of circulating PMN and monocytes by 

cyclophosphamide, also abolished both the cellular influx in BAL and the 

peripheral thrombotic tendency, in spite of normal numbers of lung macrophages. 

While silica particles did not affect histamine concentrations in BAL or plasma, 

they caused an increase in neutrophil elastase activity in plasma.  

Polymorphonuclear neutrophils, through the oxidant species and mediators 

they release, contribute to vessel injury not only by their adherence to endothelium 

and by diapedesis, but also through interactions with platelet receptors such as P-

selectin 3;5;30. The majority of studies have investigated the impact of inflammation 

on tissue injury, using isolated cells 31;32, whole blood, 33 or at sites of vascular 

damage linked to the presence of thrombi 34. However, previously reported 

population-based studies have established that reduced lung function is 

associated with cardiovascular morbidity and mortality 35;36. Also, it has been 

recently shown that particulate air pollution can cause lung inflammation and 

promotes systemic inflammation, atherosclerosis and thrombosis 11;13-17;37. In the 

present study, we have investigated the relationship between lung inflammation 

and thrombosis via the study of interactions between lung macrophages, 

monocytes, PMN and platelets, operating in two different compartments, i.e. the 

respiratory and cardiovascular system. As a cardiovascular endpoint, we used a 
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recently established and validated model of acute thrombosis in the hamster 38. In 

this photochemical injury model of platelet-rich thrombosis, prothrombotic 

tendencies can be approached experimentally 17;23;39.  

To investigate the role of macrophages and PMN in priming platelet activation 

and thrombus formation, we selected silica particles as a tool to produce lung 

inflammation within 24 h 19. In contrast to ultrafine particles (UFPs, diameter < 0.1 

µm), which may translocate from the lung into the blood 40-42, the silica particles 

used (2 µm) were too large to translocate. It is known that extra-thoracic 

structures, such as the liver and spleen, may be affected by exposure to silica, 

however, these features have been described in the clinical and pathological 

literature after long term exposure to silica particles. Such extrathoracic silicosis is 

always associated with pulmonary silicosis, and it is generally believed to be 

"metastatic" through a possible lymphatic spread 43;44. However, such 

extrathoracic spread is unlikely to have occurred in the present study because of 

the time window (24 h) investigated. Therefore, any systemic effect produced by 

this type of particles in our model must have resulted predominantly, if not 

exclusively, from lung inflammation and the passage of mediators released from 

the lung into the systemic circulation.  

Silica particles caused a dose-dependent increase in the number of 

macrophages and neutrophils in BAL, along with enhanced thrombus formation, 

most likely due to peripheral platelet activation as indicated above.  

An effect of silica particles on peripheral thrombosis has not been reported 

previously, but using other types of particles, we have previously reported that 

polystyrene UFPs and diesel exhaust particles (DEP) cause lung inflammation and 

the development of peripheral thrombogenicity resulting from circulating platelet 

activation 14-17. Therefore, within the time window investigated (24 h), lung 
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inflammation, following exposure to silica particles, appears to be a common 

initiating step with other particles such as DEP.  

Alveolar macrophages are the principal phagocytes mediating uptake and 

degradation of organisms in the lung. In addition to locomotion, phagocytosis, and 

microbiocidal activities, resident and infiltrating macrophages secrete a variety of 

chemokines and cytokines responsible for PMN recruitment 45. To assess the role 

of macrophages in the influx of PMN in the lung and in the development of 

peripheral thrombosis in response to silica particles, hamsters were depleted by i.t. 

pretreatment with liposome-encapsulated clodronate (CL). Lung macrophage 

depletion in the present study was comparable to that described by Koay et al. 25 

after i.t. administration of CL in mice. Our results demonstrate that the selective 

depletion of pulmonary macrophages leads to significant inhibition of monocyte 

and PMN influx upon administration of silica. This result confirms a primary role for 

macrophages in the PMN recruitment. 

To further assess the role of lung macrophages, circulating PMN and 

monocytes were depleted, using cyclophosphamide. Cyclophosphamide did not 

affect the number and composition of cells (including macrophages) in BAL of 

control hamsters, nor did it affect the number of circulating platelets. The degree of 

thrombosis in saline-treated hamsters was not affected by the cyclophosphamide 

treatment, demonstrating that the acute thrombotic response to the photochemical 

injury is independent of leukocyte activation and platelet-leukocyte interactions. 

These results are in agreement with studies reported in mice 26, hamsters 46 and 

pigs 47. However, depletion of monocytes and neutrophils with cyclophosphamide 

caused a strong inhibition of the silica particle-dependent peripheral thrombosis. 

These findings indicate that lung macrophage activation by silica 28;29 is required to 

trigger peripheral thrombogenicity, but that the simple activation of macrophages is 
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insufficient to do so, in the absence of a further macrophage-mediated influx of 

monocytes and PMN in the lung. Taken together, these results uncover the 

primary role of lung macrophages, which are responsible for PMN influx in the 

lung, but also the essential role of PMN which further contribute to additional 

monocyte infiltration. Our depletion approach thus revealed that macrophage-PMN 

cross-talk is an essential element in explaining the development of peripheral 

thrombotic events after instillation of silica particles. 

Recently, we found that 24h following i.t. administration of DEP, histamine 

concentrations increased in BAL and in plasma and that the pretreatment of 

hamsters with diphenhydramine 14, a histamine H1-receptor antagonist, or with 

sodium cromoglycate 18, a mast cell and basophil stabilizer, abrogated the 

inflammatory and thrombotic effects, by antagonizing histamine H1 receptor or by  

blocking its release. In the present study, no histamine release was observed in 

BAL or plasma, thus excluding mast cell and basophil participation in the 

development of peripheral thrombogenicity. This striking difference between DEP 

and silica may be related to the specific surface chemistry of DEP, which carry 

organic compounds that may trigger histamine release in mast cells and initiate 

lung inflammation 48;49. Therefore, to study the relation between pulmonary 

infiltrating cells and peripheral platelet activation, the silica model seems simpler, 

because it does not involve plasma histamine-dependent leukocyte activation, 

complicating the study of the relation between lung cells and peripheral platelets. 

Moreover, circulating leukocyte numbers were not affected following silica 

administration, excluding possible systemic leukocyte activation. 

Neutrophil elastase activity was elevated in BAL and in plasma in response to 

silica particle administration. Neutrophil elastase activity has been shown to 

augment upon lung injury associated with neutrophil infiltration in alveolar spaces 
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50. In addition, neutrophil elastase and cathepsin G released from activated 

neutrophils were reported to contribute to platelet activation in vitro, via activation 

of the platelet receptor PAR-4 21;51. To assess the role of neutrophil elastase 

released in the lung on the observed peripheral thrombotic events, hamsters were 

i.t. instilled with MeOSuc-AAPV-CMK, a specific neutrophil elastase inhibitor 52, 

that has been shown to inhibit elastase-induced acute lung injury in hamsters 52. 

Our results confirm a potential role for pulmonary elastase in peripheral platelet 

activation. Indeed, the i.t. pretreatment of hamsters with MeOSuc-AAPV-CMK 

while not affecting the silica particle-induced lung inflammation per se, partially but 

significantly inhibited the peripheral thrombotic tendency. Both neutrophil elastase 

and cathepsin G have been proposed as mediators of platelet activation by 

neutrophils 20;21; the importance of each enzyme separately will have to be 

evaluated for the priming of platelets.  

In conclusion, our findings provide novel evidence for a critical role of 

macrophage-neutrophil cross-talk during lung inflammation, leading to the release 

of neutrophil elastase into the systemic circulation. Neutrophil enzymes may be 

responsible for the priming of platelet activation and contribute to the development 

of a thrombotic tendency, when such primed platelets encounter a (mildly) injured 

vessel wall. 
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Figure legends 
 

Figure 1. Silica-induced lung inflammation. Numbers of macrophages (a) and 

polymorphonuclear neutrophils (PMN) (b) in bronchoalveolar lavage fluid, obtained 

24 h after i.t. instillation of saline or silica particles (2, 20 or 200 µg/animal). Means 

± SEM (n = 4-5 in each group). Statistical analysis by one-way ANOVA followed by 

Newman-Keuls multiple comparison test. 

 

Figure 2. Silica-induced peripheral thrombogenicity in the femoral vein. 

Cumulative thrombus size, expressed as total light intensity over 40 min [in 

arbitrary units (A.U.)], after a mild photochemical damage to the endothelium of a 

femoral vein. Data were obtained 24 h after i.t. instillation of saline or silica 

particles (2, 20 or 200 µg/animal). Means ± SEM (n = 4-7 in each group). 

Statistical analysis by one-way ANOVA followed by Newman-Keuls multiple 

comparison test. 

 

Figure 3. Silica-induced lung inflammation after pulmonary macrophage 

depletion. Numbers of macrophages (a) and polymorphonuclear neutrophils 

(PMN) (b) in bronchoalveolar lavage fluid obtained 24 h after i.t. instillation of 

saline or silica particles (20 µg/hamster) with or without i.t. pretreatment with 

clodronate-liposomes (CL, 150 µl) or saline liposomes (SL, 150 µl), 48 h earlier. 

Means ± SEM (n = 4 in each group). Statistical analysis by two-way ANOVA 

followed by Bonferroni multiple comparison test. 
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Figure 4. Silica-induced peripheral thrombosis after pulmonary macrophage 

depletion. Cumulative thrombus size, expressed as total light intensity over 40 

min [in arbitrary units (A.U.)], after a mild photochemical damage to the femoral 

vein. Data were obtained 24 h after the i.t. instillation of saline or silica particles 

(20 µg/hamster) with or without i.t. pretreatment with CL (150 µl) or SL (150 µl), 48 

h earlier. Means ± SEM (n = 4 in each group). Statistical analysis by two-way 

ANOVA followed by Bonferroni multiple comparison test. 

 
Figure 5. Silica-induced lung inflammation after systemic PMN and 

monocytes depletion. Numbers of macrophages (a) and polymorphonuclear 

neutrophils (PMN) (b) in bronchoalveolar lavage fluid obtained 24 h after i.t. 

instillation of saline or silica particles (20 µg/hamster) with or without i.p. 

pretreatment with i.p. cyclophosphamide (CP, 20 mg/hamster), 96 h earlier. Means 

± SEM (n = 4-5 in each group). Statistical analysis by one-way ANOVA followed by 

Newman-Keuls multiple comparison test. Data for non CP-pretreated hamsters are 

the same as in figure 1.  

 

Figure 6. Silica-induced peripheral thrombosis after systemic PMN and 

monocytes depletion. Cumulative thrombus size, expressed as total light 

intensity over 40 min [in arbitrary units (A.U.)], after a mild photochemical damage 

to the femoral vein. Data were obtained 24 h after i.t. instillation of saline or silica 

particles (20 µg/hamster) with or without i.p. pretreatment with CP (20 

mg/hamster), 96 h earlier. Means ± SEM (n = 4-7 in each group). Statistical 

analysis by one-way ANOVA followed by Newman-Keuls multiple comparison test. 

Data for non CP-pretreated hamsters are the same as in figure 1.  
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Figure 7. Neutrophil elastase release. Elastase concentrations (x 1 µmol of p-

nitroanaline/ml sample) in BAL (a) and plasma (b), 24 h after i.t. instillation of 

saline or silica particles (20 µg/hamster) with or without i.t. pretreatment with 

clodronate liposomes (CL, 150 µl) or i.p. pretreatment with cyclophosphamide (CP, 

20 mg/hamster). Means ± SEM (n = 4-5 in each group). Statistical analysis by one-

way ANOVA followed by Newman-Keuls multiple comparison test. 

 

Figure 8. Neutrophil elastase inhibition. Numbers of macrophages (a) and 

polymorphonuclear neutrophils (PMN) (b) in bronchoalveolar lavage fluid, and 

cumulative thrombus size, expressed as total light intensity over 40 min [in 

arbitrary units (A.U.)], after a mild photochemical damage to the femoral vein (c). 

after i.t. administration of MeOSuc-AAPV-CMK. Data were obtained 24 h after i.t. 

instillation of saline or silica particles (20 µg/animal) with or without i.t. 

pretreatment with MeOSuc-AAPV-CMK (250 µg/animal). Means ± SEM (n = 4-7 in 

each group). Statistical analysis by one-way ANOVA followed by Newman-Keuls 

multiple comparison test. Data for non MeOSuc-AAPV-CMK-pretreated animals 

are the same as in figure 1 and figure 2. 
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