Laboratory of Molecular Neuroscience   printer friendly

Genetic regulation and modification of the structure and function of the membrane lipid bilayer
Studies in Stearoyl-CoA desaturase (SCD1, FADS-1) and D6-fatty acid desaturase (FADS-2) deficient mouse models


Metabolism and the systemic role of mono- and unsaturated fatty acids
Genetic analysis and regulation of the structure - function relationship of complex membrane phospholipids. Stearoyl-CoA desaturase (SCD1, FADS-1) and D6-fatty acid desaturase (FADS-2).

The key enzyme, the mitochondrial 3-2-trans enoyl-CoA isomerase (ECI) responsible for the enzymatic transformation of the cis double bond system of polyenoic fatty acids completed our understanding of the degradation of all fatty acids in the ß-oxidation cycle. The rat isomerase has been cloned in this laboratory and the recombinant form of the mouse isomerase crystallized. The eci - null allelic mouse has been generated, which provided new insight and a diagnostic tool in pediatrics to discover a new form of inborn error among the numerous unknown mitochondrial defects in human.

The essential fatty acids linoleic and alpha-linolenic acid are transformed to the eicosa- and docosapolyenoic fatty acid series in a cascade of desaturation and chain elongation reactions, which is initiated by the D6 fatty acid desaturase. We discovered that the chain elongation in this transformation cascade is catalyzed by the microsomal malonyl-CoA dependent fatty acid chain elongation complex. De nova synthesized palmitic and stearic acids are desaturated by stearoyl-CoA desaturase (SCD-1; FAD-1), whereas the essential fatty acids are desaturated by D6-fatty acid desaturase (FADS-2). To get insight into the role of mono- and poly-unsaturated fatty acids as membrane constituents for their biophysical properties and precursor functions of biologically highly active signal molecules, we generated both the scd1-/- and fads2-/- knock out mouse mutants by gene targeting. We discovered the important role of SCD1 in transepidermal water barrier regulation and for temperature and energy homeostasis.

The lack of polyunsaturated fatty acids (PUFAs) in the fads2-/- mouse abolishes the eicosanoid synthesis via the cyclic (cyclooxygenases) and linear lipoxygenase pathways. FADS-2 deficiency disturbs the initial platelet aggregation step in the coagulation system. PUFA deficiency in phospholipids of the membrane lipid bilayer has a strong impact on membrane domain structures, e.g. leads to the disruption of intercellular adherens junction systems of the blood-testis barrier and causes male and female sterility. The complex phenotypic analysis of the auxotrophic fads2-/- mutant is under way


dummy
Figure 1: The key role of D6-desaturase in the metabolism of essential fatty acids


dummy
Figure 2: Induced thromboembolism in carotoid artery of wt (+/+) and fads2-/- mice.


dummy
Figure 3: Histology of wt- and -/- mouse.


References
  1. Binczek E, Jenke B, Holz B, Günter RH, Thevis M, Stoffel W, Obesity resistance of the stearoyl-CoA desaturase-deficient (scd1-/-) mouse results from disruption of the epidermal lipid barrier and adaptive thermoregulation. Biol Chem. 388, 405 (2007)
  2. Janßen, U. and Stoffel, W. Disruption of mitochondrial ß-oxidation of unsaturated fatty acids in the 3, 2trans-enoyl-CoA isomerase deficient mouse J. Biol. Chem. 277, 19579-19584 (2002)
  3. Janßen, U., Davies. E.M., LeBeau, M.M. and Stoffel, W. Human Mitochondrial Enoyl.-CoA Hydratase Gene (ECHS1): Structural Organization and Assignment to Chromosome 10q26.2-q26.3 Genomics 40, 470-475 (1997)
  4. U. Janßen, T. Fink, P. Lichter, W. Stoffel Human mitochondrial 3,2-trans-enoyl-CoA isomerase (DCI): gene structure and localization to chromosome 16q13.3 Genomics 23, 223-228 (1994)
  5. G. Müller-Newen, U. Janssen, W. Stoffel Enoyl-CoA hydratase and isomerase form a superfamily with a common active site glutamate residue Eur. J. Biochem. 228, 68-73 (1994)
  6. G. Müller-Newen, W. Stoffel Site-directed mutagenesis of putative active site amino acid residues of 3,2-trans-enoyl-CoA isomerase, conserved within the low homology isomerase/hydratase enzyme family Biochem., 32, 11405-11412 (1993)
  7. W. Stoffel, M. Düker, K. Hofmann Molecular cloning and gene organization of the mouse mitochondrial 3,2-trans-enoyl-CoA isomerase FEBS, 333, 119-122 (1993)
  8. G. Müller-Newen, W. Stoffel Mitochondrial 3-2trans-enoyl-CoA isomerase. Purification, cloning, expression, and mitochondrial import of key enzyme of unsaturated fatty acid b-oxidation. Biol. Chem. Hoppe-Seyler, 372, 613-624 (1991)
  9. G. Müller-Newen, W. Stoffel Mitochondrial 3-2trans-enoyl-CoA isomerase. Purification, cloning, expression, and mitochondrial import of key enzyme of unsaturated fatty acid ?-oxidation. Biol. Chem. Hoppe-Seyler, 372, 613-624 (1991)
  10. A. Haase, W. Stoffel The 3'-flanking region shared by the human apolipoprotein AI and CIII gene regulates gene expression in cooperation with 5'-flanking elements Biol. Chem. Hoppe-Seyler, 371, 375-382 (1990)
  11. S. Euler-Bertram, W. Stoffel Purification and characterization of bovine liver 3-cis-2-trans-enoyl-CoA isomerase Biol. Chem. Hoppe-Seyler, 371, 603-610 (1990)
  12. W. Stoffel, M. Grol Purification and properties of 3-cis-2-trans-enoyl-CoA-isomerase from rat liver mitrochondria Hoppe-Seyler's Zeitschr. Physiol. Chemie, 359, 1777-1782 (1978)
  13. W. Stoffel, M. E. De Tomás, H. G. Schiefer Die enzymatische Acylierung von Lysophosphatidsäure, gesättigtem und ungesättigtem Lysolecithin Hoppe-Seyler's Zeitschr. Physiol. Chemie, 348, 882-890 (1967)
  14. W. Stoffel, H. D. Pruss Synthesis of eicosa-2-trans-8,11,14-all-cis-tetraenoic acid-3-14C and DL-3-hydroxyeicosa-8,11,14-all cis-tri-enoic acid-3-14C J. Lipid Research, 8, 196-201 (1967)
  15. P. Overath, E. M. Raufuß, W. Stoffel, W. Ecker The induction of the enzymes of fatty acid degradation in Escherichia coli Biochem. Biophys. Res. Comm. 29, 28-33 (1967)
  16. W. Stoffel, A. Scheid Zur Polyenfettsäure- und Phospholipoidsynthese in der Gewebekultur von HeLa-Zellen Hoppe-Seyler's Zeitschr. Physiol. Chemie, 348, 205-226 (1967)
  17. W. Stoffel Über Biosynthese und biologischen Abbau hochungesättigter Fettsäuren Naturwissenschaften 53, 621-630 (1966)
  18. W. Stoffel Untersuchungen über die Biosynthese von Membranphospholipiden Acylierung des Lysolecithins und Lysophosphatidsäure durch Polyenfettsäuren Hoppe-Seyler's Zeitschr. Physiol. Chemie, 347, 102-117 (1966)
  19. W. Stoffel, G. D. Wolf Chemische Synthese von 1-O-[3H]-Palmitoyl-L-glycerin-3-phosphat (L-3-Lysophosphatidsäure) Hoppe-Seyler's Zeitschr. Physiol. Chemie, 347, 94-101 (1966)
  20. W. Stoffel, H. G. Schiefer, R. Ditzer Der Stoffwechsel der ungesättigten Fettsäuren VIII. Chemische Synthese und Stoffwechsel der [1-14C]-7c,9c,12C-Oktadekatriensäure und der [1-14C]-7t,9c,12c-Oktadekatriensäure Hoppe-Seyler's Zeitschr. Physiol. Chemie, 345, 52-60 (1966)
  21. W. Stoffel, H. G. Schiefer Der Stoffwechsel der ungesättigten Fettsäuren VII. Untersuchungen über die Bildung cis-olefinischer Bindungen in Polyenfettsäuren Hoppe-Seyler's Zeitschr. Physiol. Chemie, 345, 41-51 (1966)
  22. W. Stoffel, W. Kahlke The transformation of phytol into 3,7,11,15-tetramethylhexadecanoic (phytanic) acid in Heredopathia atactica polyneuritiformis (Refsum's syndrome) Biochem. Biophys. Res. Comm., 19, 33-36 (1965)
  23. W. Stoffel Chemical synthesis of 3H- and [1-14C]-labeled polyunsaturated fatty acids J. Amer. Oil Chemist's Soc., 42, 583-587 (1965)
  24. W. Stoffel, H. Wiese Die Biosynthese der Öl-, Linol- und ?-Linolsäure in Phycomyces blakesleanus Hoppe-Seyler's Zeitschr. Physiol. Chemie, 340, 148-156 (1965)
  25. W. Stoffel, H. G. Schiefer Der Stoffwechsel der ungesättigten Fettsäuren VI. Zur ß-Oxidation der Mono- und Polyenfettsäuren Untersuchungen in vivo und in vitro mit doppelt [3H, 14C]- und [1-14C]-markierten Mono- und Polyenfettsäuren Hoppe-Seyler's Zeitschr. Physiol. Chemie, 341, 84-90 (1965)
  26. W. Stoffel, H. Caesar Der Stoffwechsel der ungesättigten Fettsäuren IV. Zur b-Oxidation der Mono- und Polyenfettsäuren Der Mechanismus der enzymatischen Reaktionen an 2cis-Enoyl-CoA-Verbindungen Hoppe-Seyler's Zeitschr. Physiol. Chemie, 341, 76-83 (1965)
  27. W. Stoffel, H. Caesar, R. Ditzer Der Stoffwechsel der ungesättigten Fettsäuren IV. Zur b-Oxidation der Mono- und Polyenfettsäuren Der Mechanismus der enzymatischen Reaktionen an 3cis-Enoyl-CoA-Verbindungen Chemische Synthesen von Intermediärprodukten Hoppe-Seyler's Zeitschr. Physiol. Chemie, 339, S182-193 (1964)
  28. W. Stoffel, R. Ditzer, H. Caesar Hoppe-Seyler's Zeitschr. Physiol. Chemie, 339, 167-181 (1964)
  29. W. Stoffel, R. Ditzer und H. Caesar Der Stoffwechsel der ungesättigten Fettsäuren III Zur Frage der Biohydrogenierung der ungesättigten Fettsäuren Hoppe-Seyler's Zeitschr. Physiol. Chemie, 337, 123-132 (1964)
  30. W. Stoffel, K. L. Ach Der Stoffwechsel der ungesättigten Fettsäuren. II. Eigenschaften des kettenverlängernden Enzyms. Stoffwechsel von cis-b-g-Enoyl-Coenzym A-Verbindungen Angewandte Chemie, 76, 440-441 (1964)
  31. W. Stoffel Synthese von [1-14C]-markierten all-cis Polyenfettsäuren Liebigs Annalen d. Chemie, 673, 26-36 (1964)
  32. W. Stoffel Der Stoffwechsel der ungesättigten Fettsäuren I. Zur Biosynthese hochungesättigter Fettsäuren Hoppe-Seyler's Zeitschr. Physiol. Chemie, 333, 71-88 (1963)
  33. W. Stoffel, E. Bierwirth
    Synthese [1-14C]-markierter Polyenfettsäuren
    Angewandte Chemie, 74, 905-906 (1962)


July 12, 2011
Center for Biochemistry, Joseph-Stelzmann-Straße 52, D50931 Cologne
Suggestions and wishes: Budi Tunggal
Voice: +49 221 4786930, Fax: +49 221 4786979
dummy