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ANOVA with binary variables -
The F-test and some Alternatives

Abstract

Several methods to perform an ANOVA with a binary dependent variable in 2-way layouts are 
compared with the parametric F-test. Equal and unequal cell counts as well as several different 
effect models are taken into account. Special attention has been paid to heterogeneous condi-
tions, which are caused by nonnull effects through the relation of the binomial probability and 
its variance. For between subject designs Puri & Sen‘s L statistic, Brunner & Munzel‘s ATS, 
the χ2-test of log-linear models, the logistic and the probit regresssions are considered. The L 
statistic is recommended, because the F-test cannot keep always the type I error under control, 
if there are nonnull effects. For mixed designs the Huynh-Feldt adjustment, Hotelling Lawley‘s 
multivariate test, Puri & Sen‘s L statistic, Brunner & Munzel‘s ATS, Koch‘s ANOVA, GLMM 
and GEE models are considered. None of these methods is able to cover all situations. Depend-
ing on the design and on the model to be checked, in most cases the parametric F-test with 
adjustment, the multivariate test or Koch‘s method are advised. Additional results: heteroge-
neous correlations and the size of the design have an impact, particularly on the F-test.
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1. Introduction
The analysis of variance (ANOVA) is one of the most important and frequently used methods 
of applied statistics, mainly for the analysis of designs with only grouping factors (between 
subject designs) and of designs with grouping and repeated measurements factors, usually refer-
red as mixed or split-plot designs. (The term ANOVA is commonly used for the analysis of both 
designs, though the analysis of repeated measures designs may be subsumed under mixed mo-
dels.) There is the parametric version and there are nonparametric methods as well. The first one 
has assumptions, of course. These are essentially normality of the residuals, homogeneity of the 
variances, and in the case of repeated measurements additionally sphericity and homogeneity of 
the covariance matrices over the groups. But what to do, if the dependent variable y is dicho-
tomous, e.g. with values yes or no, or 1 and 0?

Due to the familiarity and simplicity of the ANOVA methodology, one could trust in the robust-
ness of the parametric tests. „A test is called robust when its significance level (Type I error 
probability) and power (one minus Type-II error probability) are insensitive to departures from 
the assumptions on which it is derived.“ (See Ito, 1980). One of the first, who investigated the 
applicability of the parametric F-test to a dichotomous response variable, was Lunney (1970). 
His simulations showed that for 1-, 2- and 3-factorial designs the type I error rate is controlled 
as long as N 20 for 0.2  p  0.8, and N 40 for other values of p (p being the percentage of 
one of the outcomes of y). And the power is satisfying as long as N is not too small, N being the 
df of the error term, approximately the total sample size. This seems reasonable as on one side 
the homogeneity of the variances is the most essential assumption - noting that the variance 
p(1-p) depends on the mean p - and on the other side for 0.25 p 0.75 variances of a binomial 
distributed outcome can be regarded as equal. Unfortunately Lunney‘s study has fundamental 
restrictions: first he examined only equal sample sizes, and secondly he checked type I error ra-
tes only if there are no other effects, and therefore neglecting the cases of unequal variances. 
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Besides that only between subject designs had been studied. D‘Agostino (1971) wrote a detailed 
critic on Lunney‘s paper. Nevertheless it remains one of the most important works on this 
subject. Only decades later, Jaeger (2008) expressed concern on the use of the parametric ANO-
VA for the analysis of a binary outcome. Therefore alternatives are searched, for between 
subject as well as for split-plot designs. 

From these the focus has been laid here on those methods, which are well-known and easily 
applicable in the software systems. First, one of the nonparametric ANOVA methods could be 
applied. See Luepsen (2017) for an overview for the case of between subject designs. To be con-
sidered here are the Puri & Sen-method (e.g. Puri & Sen, 1985), often referred as L statistic, the 
ANOVA-type statistic ATS (e.g. Brunner & Munzel, 2002) and a nonparametric ANOVA pro-
cedure proposed by Koch (1969). The L statistic and the ATS are available for both designs, 
whereas Koch‘s method is designed for mixed designs. They all are based on ranking the (usu-
ally continuous) observed values, but can be applied also to a binary outcome. In this case, the 
ranking, which is part of the algorithm, transforms the two values just into two other distinct 
values by using midranks for ties, thus having no real effect. The tests produce different test sta-
tistics, even if applied to binary variables. Other methods based on rank transformation, e.g. the 
rank transform (see Conover & Iman, 1981), or the inverse normal transformation (see e.g. 
Mansouri and Chang, 1995), would make no difference compared to the parametric F-test. The 
popular aligned rank transform (see e.g. Mansouri and Chang, 1995), is not reasonable for 
dichotomous variables, as Luepsen (2016) pointed out. 

Additionally there are methods designed to analyze a dichotomous variable: log-linear models 
including the χ2 test, logistic regression and probit regression for between subject designs (see 
e.g. Agresti, 2002), and the corresponding methods for dependent samples: GEE (Generalized 
Estimating Equations), established by Liang & Zeger (1986), and GLMM (Generalized Linear 
Mixed Models, sometimes also called MLM, multi level models) by Harville (1977). Both are 
extensions of the generalized linear models GLM allowing correlated responses. Finally, reflec-
ting that unequal binomial probabilities pi result in unequal variances, methods for mixed desi-
gns should be considered that do not assume sphericity, e.g. the Huynh-Feldt adjustment for the 
parametric ANOVA and the multivariate statistic by Hotelling-Lawley.

Of course, there exist a large number of studies concerning the methods listed above, but usually 
each compares only a couple of them. And the situations, which are investigated, differ from 
study to study. E.g. the designs or models are different, the sample sizes are varying, or often 
the type I error rates are controlled only for the null model. Just to mention the lack of models 
with nonnull interaction effects. Also the challenging pairing problem is rarely treated: the 
parametric F-test tends to be conservative, if cells with larger ni have also larger variances (po-
sitive or direct pairing), and reacts liberal, if cells with larger ni have the smaller variances 
(negative or inverse pairing), see e.g. Feir & Toothaker (1974). Therefore the results are incon-
sistent. So the aim of this research is to compare the most popular and in the literature most fa-
vored ANOVA methods for binary variables within a common frame of designs, models and 
situations, which should make them better comparable.

2. Literature Review
Although there are numerous studies comparing the different methods mentioned above, only 
few of them consider a binary response format. Therefore one has to look onto those, which 
include the impact of heterogeneous variances, because only for .25 < p < .75 the binomial 
distributions to be compared can be assumed to have equal variances. Furthermore it has to be 
accepted, that most of them deal only with 1-factorial designs and therefore give no information 
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about the behavior of the interaction effects. The results cited here arose from simulation stu-
dies. First the case of between subject designs. 

Hsu & Feldt (1969) compared the 1-factorial ANOVA F-test with the χ2 test, which may be con-
sidered as the obvious test for such a simple design, especially for the case of 2 values of y. First, 
the χ2 test demands a minimum sample size that is higher than that required by the F-test. The 
second limitation of the χ2 test is that it is not easily extended to factorial designs and tests of 
interactions. They confirm for this simple case the results found by Lunney (1970) and favor the 
F-test. One of the few studies considering log-linear models for the analysis of factorial designs 
comes from Swafford (1980). He explains in detail the problems arising when specific effects, 
especially interaction effects, have to be tested, because commonly hierarchic models are used, 
which do not guarantee independent tests of all effects. Tansey et al. (1996) compared log-linear 
models and logistic regression and list several advantages of the logistic approach in the case of 
ANOVA designs. 

Concerning the L statistic by Puri & Sen one has to restrict mainly to studies of the Kruskal-
Wallis test (KW), which is identical to the L statistic limited to one factor. Lix et al. (1996) re-
viewed articles dealing with the consequences of assumption violations for one-way ANOVAs, 
among them detailed studies by Tomarken & Serlin (1986) as well as Feir & Toothaker (1974), 
who analyzed the F-test and nonparametric alternatives under variance heterogeneity. They 
summarize that the KW appears to be sensitive to the presence of heterogeneous variances in 
both balanced and unbalanced designs, and that it is difficult to establish clear guidelines 
regarding the use of the KW under heterogeneity. Sawilowski (1990) reports several studies of 
factorial designs conducted by Harwell (e.g. Harwell et al. , 1992), which show the L statistic 
as a robust but conservative test, needing large samples (N>100) to achieve a reasonable power. 
To summarize: although Puri & Sen‘s method behaves rather conservative, it may be a good 
choice in cases of heterogeneity, which is a condition for its application on binary variables.

Logistic and probit regression seem to be ideal methods for analyzing a binary variable. Their 
disadvantage: the large n requirement. Malhotra (1983) compared them with OLS regression. 
In his simulation study he emphasized the effect of extreme p (0.1, 0.2, 0.8, 0.9). For smaller 
and medium sample sizes (<50) he sees the OLS regression superior to the logit and probit reg-
ressions, whereas for large samples (>100) he favors the logistic regression because of an up to 
10% higher power rate. The relative performance of all three models is quite comparable at 
p=.5, regardless of sample size. Malhotra reported in his publication also quite a number of 
comparative studies and gave the results in a clearly arranged table. Nearly the same results 
were reported by Cleary & Angel (1984) and Pohlmann & Leitner (2003). In studies, consi-
dering both the logit and probit regressions, generally the logit approach is seen to be more 
efficient, but unfortunately none of the studies examined the tests together with nonnull inter-
actions.

There are a number of studies related to the ATS. First to mention, Brunner et al. (1999a) who 
compared the ATS method with the KW in respect to unequal sample sizes, different pairing 
and unequal variances. They found the KW to react too liberal in the case of heterogeneous va-
riances, even for equal ni, whereas the ATS keeps the type I error completely under control. 
Unfortunately the ATS has type I error rates beyond the limit for small N. A comparable power 
has been observed for both tests. In the cases of positive and negative pairing, the ATS has its 
error rates closer to the α-level than the KW. Richter & Payton (1999) compared the ATS with 
the classical F-test in a 2-factorial study with heterogeneous variances, and state that the ATS 
keeps always the α level, but performs worse than the F test for small ni  10 regarding the 
power. It is virtually powerless to detect small to moderate effects, but getting nearer to the F-test 
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for increasing effect sizes. The general judgement: the ATS controls the type I error, except for 
small ni, but possesses a poor power.

Among the first studies of applying the one-way parametric repeated measures ANOVA to a 
binary response, were those by Cochran (1950), Draper (1972) and Mandeville (1972). Cochran 
and Draper found in their simple simulations only neglectable violations of the type I error rate. 
Mandeville compared the F- and Q-test together with the multivariate statistic by Hotelling-
Lawley for .1<p<.9 , different correlations, but equal variances. He showed for the number of 
treatments k > 5 that the F-Test has generally the larger power and  the lower type I error rate, 
at least for N>60, while the multivariate test reveals in some instances larger error rates. The test 
appears disappointing because, depending on the number of levels k and the correlations, it 
reacts sometimes rather liberal and sometimes too conservative, especially for extreme p: liberal 
mostly for small correlations r  and conservative for large r. Stiger et al. (1998) evaluated the F-
test with and without the Huynh-Feldt correction and the multivariate test for an ordinal 4-point 
scale in a split-plot design both with AR(1) covariance structure and  r=0.5. For all three metho-
ds the error rates are rather close to the nominal level for both repeated measures effects, though 
the rates slightly increase, if the distribution of y is skewed. Generally the F-test without correc-
tion tends to be sometimes mildly liberal, while the Huynh-Feldt correction renders it more con-
servative. In regard to the power the multivariate appeared as the poorest. The author‘s 
recommendation: F-test with Huynh-Feldt correction, which seems to be the favorite also in 
other studies.

Concerning Puri & Sen‘s L statistic for within subject designs, there is only one study to men-
tion: Harwell & Serlin (1994) compared F-test, Friedman test and L statistic in a one-way design 
with equal variances but nonspherical covariance matrices. When covariances are equal, all of 
the tests perform satisfactorily. For the 2:1 covariance ratio the L statistic performs well, while 
the F-test tends to produce inflated error rates for k >3. For covariance rations 3:1 and 5:1 the L 
statistic produces more and more inflated error rates, while the F-test performs poorly. In con-
trary to other findings Harwell & Serlin report that for nonnormal distributions the power of the 
L statistic was generally higher than the F test.

For the ATS in a mixed design there is a study by the authors themselves, Akritas & Brunner 
(1997b), in which they showed that the statistic keeps the α level correct, for equal and unequal 
covariance matrices. Konietschke et al. (2010) analyzed the ATS in a 1-factorial within subject 
design considering different covariance matrices and also a dichotomous dependent variable. 
They, too, attested the ATS a perfect control of the type I error.

Another solution for the analysis of split-plot designs is supplied by G. Koch, who proposed se-
veral nonparametric ANOVA procedures (Koch, 1969). There are a couple of comparisons 
taking Koch‘s method into consideration. Tandon & Moeschberger (1989) compared the F-test 
joined with the Huynh-Feldt correction, the multivariate approach and Koch‘s method in seve-
ral mixed designs with different correlations r (0, 0.1, 0.25). In contrary to the parametric tests, 
Koch‘s test shows slightly liberal results for the group effect when ni 10. In contrast, the 
parametric tests offends the type I error rate for the tests of the repeated measures effect and the 
interaction, while Koch‘s method is more conservative. For the case of unequal correlations 
Koch‘s test performs the best, whereas the corrected F-test behaves conservative. One disad-
vantage is the poor power for small N. Ernst & Kepner (1993) come in their simulation study to 
similar results.

Meanwhile a large number of studies are concerned with GEE and GLMM, but only very few 
compare these methods with the parametric F-test. As both methods are based on large sample 
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asymptotic theory, it is not surprising that the tests of the parameters are generally liberal for 
small samples N<50 (see e.g. Qu et al., 1994 and Stiger et al., 1998), which applies particularly 
to GEE. Therefore small sample studies are of special interest. Stiger et al. (1998) analyzed 
ordinal data in a 2*4 split-plot design with small samples sizes (20, 40, 60, 80) and examined 
the performance with respect to error rates and power of ANOVA (with and without the Huynh-
Feldt-adjustment), MANOVA and GEE. Although a 4-point scale had been used, the results 
may be adapted to binary data. The ANOVA with adjustment as well as the MANOVA perform 
well for all sample sizes, while the unadjusted ANOVA behaves sometimes slightly liberal if 
sphericity was not given. In contrast the GEE exceeds the type I error rates usually for N<60. 
Concerning the power, ANOVA is overall superior, while MANOVA has the lowest rates. 
Mancl & DeRouen (2001) summarized a number of studies examining the behaviour of GEE in 
small samples, and concluded that for N<50 the type I error rate is generally much too high. 
McNeish & Stapleton (2016) compared, among other methods, GEE and GLMM for very small 
sample sizes ( ), but unfortunately for a continuous outcome. They found that GEE 
is generally a poor choice, while GLMM provides satisfying results. McNeish & Harring (2017) 
confirmed these results for binary variables. In contrast the results of Ma et al. (2012), who also 
compared GEE with ANOVA, considering continuous and binary variables, and found that 
GEE keeps the type I error rate even for small N and has the largest power. One shortcoming of 
all the mentioned studies: in matters of the type I error rates, only the null hypotheses are 
checked, which hide possible impacts of other factors in the design.

Finally a couple of warnings in this context: „When applied to modeling binary responses, diffe-
rent software packages and even different procedures within a package may give quite different 
results“ (Zhang et al., 2011). „This kind of convergence problem is a common occurrence in 
mixed-effects modeling“ (Fox & Weisberg, 2015). They also report that SAS (Proc NLMIXED) 
and R (lme4 and glmmML) yield different results for the same datasets, though they all use the 
same integral approximation approach. By the way, sincere convergence problems are reported 
in quite a number of publications, e.g. by Beckman & Stroup (2003), who also tell: „The SAS-
available  GLMM  algorithms  considered  in  this  paper  performed  poorly  with  fewer  than  
20  subjects per treatment. ... This raises significant questions about the viability of studies with 
few subjects and binary data“.

Unfortunately, as already mentioned before, most studies deal only with one-way designs, ex-
cept those concerned with GEE and GLMM. Thus there is little knowledge neither of the beha-
vior of the interaction nor of main effects, if there are other nonnull effects. Also, there seems 
to be no general tendency in favor of one method for either design. So this study tries to fill these 
gaps. However those methods are focused, which are easily available in the statistical packages 
and give quick results for the global hypotheses.

3. Methods to be compared
The models, procedures and tests will be presented in the original form, usually for continuous 
response variables, while they will be applied to dichotomous responses. It will be remarked, 
for which type of design, between subject or split-plot, they are applicable. More information, 
especially how to use them in R or SPSS, can be found in Luepsen (2015). 

The parametric F-test

In the case of a between subject design the 2-factorial ANOVA model for a dependent variable 
y with N observations shall be denoted by

4 n≤ i 14≤

yijk αi βj αβ( )ij eijk+ + +=
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with fixed effects αi (factor A, i=1,..,I), βj (factor B, j=1,..,J), (αβ)ij (interaction AB), normally 
distributed error eijk (k=1,..,nij) with equal variances, cell counts nij and . The parame-

ters αi , βj and (αβ)ij, with the restrictions , , , can be estimated 

by means of a linear model yT = X pT + eT using the least squares method, where y are the values 
of the dependent variable, p the vector of the parameters, X a suitable design matrix and e the 
random variable of the errors. If the contrasts for the tests of the hypotheses HA (αi=0), 
HB (βi=0) and HAB ((αβ)ij=0) are orthogonal, the resulting sum of squares SSA, SSB, SSAB of 
the parameters are also orthogonal and commonly called type III SSq. They are tested by means 
of the F-distribution. In case of equal sample sizes the sum of squares as well as the mean 
squares can be easily computed as 

and the F-ratios as 

where ,  are the level means of factor A and B,  are the cell means and  is the grand 
mean (see e.g. Winer, 1991). The hypotheses of no effects, e.g. for factor A αi=0, correspond 
to equal probabilities pi in the case of a binary response.

In the case of a mixed design the classical approach will be used (see e.g. Winer et al., 1991), 
though in recent publications often mixed models, considering e.g. covariance structures, are 
preferred. For one grouping factor A and one repeated measures factor B, often called trial fac-
tor, the 2-factorial ANOVA model for a dependent variable y with  observations shall 
be denoted by

with αi, βj, eijk as above, ni subjects per group and a subject specific variation τik (k=1,..,ni). 
Additionally the covariance matrices are assumed to be spherical and equal for i=1,..,I. The 
sums of squares and mean squares of the effects are the same as above, if N is substituted by NJ, 
due to the different definition of N, whereas those for the error terms are different:

      

and the F-ratios as
     
To make up for heterogeneous variances, i.e. here unequal pi on factor B, an appropriate adjust-
ment of the degrees of freedom for the F-test is applied. Here the Huynh-Feldt adjustment, abb-
reviated H-F, is chosen (see e.g. Winer et al., 1991).

N nij=

αi 0= βj 0= αβ( )ij 0=

SSA
N
I
---- yi · ·

y–( )2
= SSB

N
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yijk αi βj αβ( )ij τik βτ( )ijk+ + + + eijk+=
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j


k


i
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Puri & Sen tests (L statistic)

The tests by Puri & Sen (1985), often referred as L statistic, offer a nonparametric test statistic 
for the General Linear Model (see e.g. Harwell & Serlin, 1989 and Thomas et al., 1999). In the 
case of ANOVA models, the hypothesis tested is the identity of distributions. The resulting test 
statistics are asymptotically χ2 distributed. They can be seen as a generalization of the well-
known Kruskal-Wallis H test (for independent samples). It is well-known that the H test can be 
performed by ranking y, conducting a parametric ANOVA and finally computing χ2 ratios using 
the sum of squares (see e.g. Winer,1991). In fact the same applies to the generalized tests. The 
χ2-ratios are computed in the case of only grouping factors as

     

and in the case of a mixed design for the tests of A, B and AB as

      

Here SSA, SSB, SSAB, or generally SSeffect , are the sum of squares as outlined before, but com-
puted for R(y), the ranks of y, where midranks are used in case of tied values. MSbetween and 
MSwithin  are the mean squares previously defined, and MStotal the variance of R(y). The degrees 
of freedom are those of the numerator of the corresponding F-test. 

The major disadvantage of this method is the lack of power for any effect in the case of other 
nonnull effects in the model. The reason: in the standard ANOVA the denominator of the F-
values is the residual mean square, which is reduced by the effects of other factors in the model. 
In contrast, the mean squares in the denominator of the χ2-tests of Puri & Sen‘s L statistic inc-
rease with effects of the other factors, thus making the ratio of the considered effect, and 
therefore also the χ2-ratio, smaller. A good review of articles concerning this test can be found 
in the study by Toothaker & De Newman (1994).

Brunner, Munzel and Puri (ATS)

The authors reflect the relative effect of a random variable X1 to a second one X2 , which is 
defined as p+ =  , i.e. the probability that  X1 has smaller values than X2 . As the 
definition of relative effects is based only on an ordinal scale of y, this method is suitable also 
for variables of ordinal or even dichotomous scale, if e.g.  (see Noguchi et al., 
2012). Based on the relative effect, they developed two tests to compare samples by means of 
comparing the relative effects: the approximately F distributed ATS (ANOVA-type statistic) 
and the asymptotically χ2 distributed WTS (Wald type statistic). In contrary to the WTS, the 
ATS accounts for the sample sizes that makes it attractive for small cell counts (see Brunner & 
Munzel, 2002). Both tests check the hypothesis of equal distribution functions, similar to that 
of the L statistic. For between subject designs detailed descriptions can be found in Brunner & 
Munzel (2002, chapter 3), Akritas et al. (1997a) as well as in Luepsen (2017). These tests have 
been extended to repeated measures designs by Brunner et al. (1999b). Bathke et al. (2009) 
described the procedures, which involve a lot of matrix algebra.

Koch‘s ANOVA

Gary Koch (1969 and 1970) proposed a couple of nonparametric procedures for split-plot desi-
gns based on a multivariate version of the Kruskal-Wallis test and a nonparametric analogue of 
the one-way MANOVA based on the trace (see e.g. Chatterjee & Sen, 1966). The hypothesis 
tested: equal mean ranks of the groups considered. This corresponds to equal probabilities pi in 

χeffect
2 SSeffect

MStotal
-----------------=

χA
2 SSA

MSbetween
------------------------= χB

2 SSB
MSwithin
---------------------= χAB

2 SSAB
MSwithin
---------------------=

P X1 X2≤( )

X1 X2, 0 1,{ }∈
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the case of a binary response. The resulting test statistics are approximately χ2 distributed. The-
re are several variants for the cases with and without compound symmetry, as well as with and 
without independence of the factors A and B. The version used here assumes an interaction, but 
no compound symmetry. A detailed description of the method and the extensive computational 
procedure can be found in Koch (1969) and shall not be reproduced here.

χ2 test and log-linear model

For between subject designs Pearson‘s χ2 test is performed.  The test of the main effects is recei-
ved from the classical test of independence for two variables. And to test the interaction of fac-
tors A and B, a log-linear model including all 2-way interactions is fitted, which yields the 
desired result. This method requires a sufficient N, because for smaller samples too many of the 
expected cell frequencies may be 1.0 or less. For details see e.g. Agresti (2002). At this point it 
should be remarked that the χ2 and the F-test are algebraically similar, and under the null hypo-
thesis asymptotically equivalent, as D‘Agostino (1972) showed.

Logistic Regression and Probit Regression

In contrary to the methods above these two are designed for a binary dependent variable with 
independent observations. Instead of building a model for y they model the probability of y=1:

logistic regression

probit regression

Here xi (i=1,..,P) are predictors, which correspond in an ANOVA environment to design va-
riables, βi are the regression parameters, and Φ the normal distribution. The computational pro-
cedures are described e.g. in Agresti (2002) and not repeated here. As ML estimation is used, a 
large N is essential. Often 10 per each βi and a minimum of 100 is postulated (see. e.g. Peng et 
al., 2002). Primarily βi =0 is tested by means of a Wald test, or approximately by a t-test. But 
an ANOVA-type test, into which all βi belonging to the same effect are summarized, is desi-
rable. It is available by means of a Wald test (see below) or LR (likelihood ratio) test. Usually 
the latter is preferred (see e.g. Agresti, 2002, and Fox, 1997), especially for smaller samples as 
analyzed in this study. 

Hotelling-Lawley‘s multivariate test

This test is often used for the analysis of repeated measures designs, because it does not require 
a compound symmetry of the variance-covariance matrix of y. Instead a multivariate normal 
distribution is demanded. Therefore this test does not seem appropriate for the analysis of dicho-
tomous dependent variables. Nevertheless various authors tried it with differing success (see 
chapter 2). First the differences of two consecutive measurements are computed d1ik = yi2k - yi1k,  
d2ik = yi3k - yi2k, ,.. (for i=1,..,I and k=1,..,ni). Then d1 , d2 ,.. are checked for 0 by means of Ho-
telling Lawley‘s test, resulting in an approximately F distributed test statistic (see e.g. Winer et 
al., 1991), which corresponds to equal differences p2-p1, p3-p2 ,... in the case of a binary out-
come.

GEE (Generalized Estimating Equations)

The GEE method (Liang & Zeger, 1986) can be considered as an extension of the logistic re-
gression to designs with repeated measurements. The specification of the model requires the 
type of correlation matrix of y. Possible correlation structures are among others the compound 

P y 1=( ) βixi
i

P

 
 exp 1 βixi

i

P

 
 exp+ 

 ⁄=

P y 1=( ) Φ βixi
i

P

 
 exp 

 =
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symmetry (CS), also often named exchangeable, and the autoregressive (AR(1)).  A short sketch 
of the model for a dichotomous y: let

 

with k=1,..,N and j=1,..,J, as well as i=1,...,P predictors and corresponding regression parame-
ters βi . Here, xijk  is the design matrix of subject k, and   with a correlation 
matrix Rk(α) for yk = (yk1, yk2,...), which can be parametrized by a vector α, and Ak = diag(pk1(1-
pk1), pk2(1-pk2),...). Then the GEE estimates of βk are the solution of

   where 

and pk = (pk1, pk2,...),  β  = (β1, β2,...) (see Emrich & Piedmonte, 1992). McNeish & Stapleton 
(2016) give a detailed description of the general model and the estimation process. Also to men-
tion Ziegler et al. (1998), who summarize a number of variants and different estimation methods 
for GEE. The GEE approach is based on LS estimation and produces virtually unbiased estima-
tes, even if the correlation structure is misspecified (see Emrich & Piedmonte, 1992 and Pan & 
Connett, 2002). On the other side, as the method is based on large sample asymptotic theory, it 
is not surprising, that for small samples N<50 the tests of the parameters βk are generally liberal 
(see e.g. Qu et al., 1994 and Stiger et al., 1998). Responsible is the variance-covariance matrix 
of βk , normally computed by means of the sandwich estimator by Liang & Zeger (1986). A 
number of authors proposed bias-corrected sandwich estimators, among others Fay & Graubard 
(2001), Kauermann & Carroll (2001), Mancl & DeRouen (2001), Morel et al. (2003), Pan & 
Wall (2001), Gosho et al. (2014) and Wang & Long (2011). Their work is summarized and 
compared by Fan et al. (2013), Fan & Zhang (2014) and Wang et al. (2016). However, McNeish 
& Stapleton (2016) found that GEE is a poor choice for small samples, even combined with one 
of the above mentioned corrected estimators, except the version by Morel et al. (2003). The hy-
potheses tested are the same as for the logistic regression.

GLMM (Generalized LinearMixed Models)

Also the GLMM method can be considered as an extension of the logistic regression to designs 
with repeated measurements. A sketch of the model for a dichotomous y:

But here, in addition to the fixed effects βi (i=1,...,P) with design matrix xijk , there are also 
random effects γik  (i=1,...,Q) for subject k with a design matrix zijk , e.g. for modelling subject 
and repeated measures effects, and to reflect the correlation among the observations of the 
same subject, often called cluster in this context. γik  are multivariate normal distributed with 
E(γik )=0. Similar to the logistic regression an explicit error term ejk is missing (sse e.g. 
McNeish & Harring, 2017). A correlation structure, as for GEE, has not to be stated here. One 
advantage of this approach is the flexibility in handling missing data, though such datasets are 
not considered here. In contrary to GEE, GLMM uses ML estimation methods, which lead to a 
number of different solutions and programs, e.g. restricted maximum likelihood estimation 
(REML), Penalized quasilikelihood, Laplace approximation, Gauss-Hermite quadrature or 
Markov chain Monte Carlo. Details, especially concerning the ML estimation, can be found at 
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Tuerlinckx et al. (2006) and Song & Lee (2006). Similar to GEE, here also the method is based 
on large sample asymptotic theory, with the consequence that for small N<50 the tests for βk  
and γik  are sometimes liberal. Li & Redden (2015) discuss a number of solutions for this prob-
lem, which lies in the estimation of the denominator degrees of freedom (ddf) for the F-test, 
into which the Wald test is transformed. The most popular solution is probably the rather com-
plicated one by Kenward & Roger. The most simple one uses ddf=N-rank(C), where C is the 
contrast matrix. Additional ANOVA-like tests are mentioned below. The hypotheses tested are 
the same as for the logistic regression.

Wald tests

The primary results from an analysis using logistic regression, probit regression, the GEE or 
GLMM method are the estimates of the model parameters βi together with their standard errors 
and a significance test of βi=0 for each i, normally by means of a Wald test. But in this context 
an ANOVA-like test is desired, into which all βi belonging to the same effect are summarized. 
On one side there is Wald‘s χ2 test in the variant for several parameters (see e.g. Carr & Chi, 
1992 and Pan & Wall, 2001):

which is approximately χ2 distributed with rank(C) degrees of freedom, and where  are the 
estimates of β, Vβ is the variance-covariance-matrix of β, and C a contrast matrix, and in its 
simpler form (see e.g. Kenward & Jones, 1992)

where  and Vβ are restricted to those i belonging to the effect of interest. Fan & Zhang (2014) 
found that the above test is too liberal for small sample sizes and proposed a different one, based 
on the work of Akritas et al. (1997a) and Brunner et al. (1997):

The expression (c1/c2)Q  is approximately χ2 distributed with f degrees of freedom where  

Fan & Zhang (2014) showed in their study of GEE for repeated measures models with 
, that their ANOVA-type test is able to control the error rates in most situations, 

while the Wald test produces rates up to 80% for the trial effects.
While the Wald test above is equivalent to a Type III test, Fox & Weisberg (2015, chapter 4.4.4) 
favored a Type II Wald test which is offered in the function Anova of the R package car. It is 
based on the likelihood ratio method, using analysis of deviance tests. This one conforms to the 
principle of marginality and is most powerful in the case of no interaction. Using it, the main 
effects may be overestimated, in contrary to the interaction effects.

4. The Study
The aim of this study is to identify one or a couple of methods, which allow the analysis of a 
binary response in a factorial ANOVA layout. For this reason the impact of several settings of 
such a design on the type I error rates and the power is investigated by means of a Monte Carlo 
study with 2000 replications. These settings are the type (between subject, split-plot), size 
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(number of cells), cell frequencies (equal, unequal), cell counts (5,10,...,50), pairing (positive, 
negative), effect of factors and interaction, binomial probabilities (p=0.1, 0.2, 0.5, 0.8, 0.9) and 
correlation structure (equal or unequal correlations). This should cover all important situations 
and allow for generalizations. The resulting sample sizes N vary from 10 to 1000. Without loss 
of generality the layout will be restricted to two factors A and B, and for each factor only one 
vector of effect sizes has been chosen, which should suffice to see, if one factor has at all an 
impact on the results. In the case of mixed designs A shall denote the grouping factor, B the trial 
factor and AB the interaction. p denotes the overall fraction of the binary outcome and pi the 
corresponding values for the groups of A.

There are two major designs: a between subject and a mixed (split-plot) design. For both the 
following subdesigns are analyzed:
• a 2*4 design (“small design“) with equal cell counts (balanced) and one with unequal cell 

counts and a ratio max(nij)/min(nij) of 3 (unbalanced), and
• a 4*5 design (“large design“) with equal cell counts (balanced) and one with unequal cell 

counts and a ratio max(nij)/min(nij) of 4 (unbalanced).

The binomial probabilities p have been set to 0.5, 0.8 and 0.9 (equivalent to 0.5, 0.2 and 0.1), as 
for 0.25 p  0.75 the variances of a binomial distributed outcome can be regarded as equal. 
For the split-plot design the following correlation structures have been chosen which are as-
sumed equal for all groups:
• exchangeable (equal covariances, compound symmetry) with r=0.3, a value that seems reali-

stic and had often been chosen (see e.g. Emrich & Piedmonte, 1992), and 
• descending correlations r=(0.7, 0.5, 0.4, 0.2) which is similar to the AR(1) structure and 

denoted as ar1 (unequal covariances, no sphericity or compound symmetry).

In the case of between subject designs, noting that A and B are exchangeable, the type I error 
rates of the main and interaction effects had been checked for the case of a null model, the case 
of one significant main effect (A(0.6) or B(0.6)), and the case of a significant interaction 
AB(0.4). In the case of mixed designs the type I error rates of all main and interaction effects 
had been checked for the case of the null model, the case of one significant main effect A(0.6) 
or B(0.4), and the case of a significant interaction AB(0.4). Here e.g. A(d) denotes an effect of 

size d for factor A, corresponding to effect vectors pT + T, where p =(p,..,p) 

with the overall probability p and  its standard deviation. Analog definitions for 
B(d) and AB(d). In some instances additional design sizes and correlation structures were analy-
zed for selected models, in order to assure some of the results.

For unbalanced designs the interaction effects (ab)ij had to be adjusted respecting the different 
cell counts, in order to avoid impacts on the main effects. It should be remarked that most ANO-
VA procedures are based upon LS estimation, which corresponds to weighted means analysis, 
where the cell counts nij have a larger impact on the results than with the unweighted means 
analysis. The latter assumes equal cell counts by design, and allows only a couple of missing 
observations (see also Winer, 1991). Unfortunately the ATS method for split-plot designs, as 
implemented in the R package nparLD, is based on the unweighted means analysis (see No-
guchi et al., 2012), which may lead to results, which are not comparable with those from the 
other analyses.

Unfortunately first simulations revealed a failure of the data generation in mixed design models, 
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when for p=0.9 in one factor level the effect had to be added: pi =0.9+s*d/2 (see above). In order 
not to let the shifted parameter pi  come too close to 0 or 1 respectively, the p had to be reduced 
generally to p=0.88. The problems intensified in the case of an unequal correlation structure 
with descending correlations (ar1), where additionally effect sizes had to be reduced from 0.6 
to 0.4 (for factor B) and 0.4 to 0.36 (for the interaction). Even worse was the case with two non-
null effects, e.g. for the analysis of the power when there are also other effects present. Then the 
effect sizes had to be scaled down to 0.3.

Another problem to be investigated is the pairing of ni and pi. Being aware that for p>0.5 the 
variances of y become smaller with increasing p, it is to be expected, that the F-test reacts libe-
ral, if levels of A with larger ni  have also larger pi, and that it reacts conservative, if levels with 
larger ni  have the smaller pi. Of course, the same behavior will apply to the case p<0.5. There-
fore the effects of factor A will be analyzed for all three relations of ni  and si : independent, pos-
itive and negative pairing. Finally, as in the case of p=0.5 with an effect d for factor A, the 
resulting pi-s*d/2 and pi+s*d/2 will be equal and therefore produce equal variances, p=0.6 is 
chosen instead, when situations of heterogeneity are analyzed.

The type I error rates (at 5% and 1%) and the power were computed for ni=5,10,15,..,50 as 
percentages of rejected null hypotheses. Although generally 2000 replications were chosen, for 
the GEE and the GLMM methods the number of repetitions have been limited to 1000 because 
of the enormous computational effort. The relatively small number of samples is not unusual 
(see e.g. McNeish, 2017 and Guerin & Stroup, 2000). Due to the convergence problems, men-
tioned in the previous chapter, which occurred mainly with GLMM in smaller samples , 
the actual number of repetitions has been reduced sometimes by about 2 percent. But the situa-
tion became much worse with GEE, which produced unmanageable covariance matrices for 
smaller samples . The failure rates reached sometimes 90 percent. In those cases the re-
petitions had to be increased to 5000, in order to receive at least 200 valid results, or the sample 
size of 5 had to be dropped from the study, especially for unbalanced designs.

De facto the study ran in two parts: in a first step all methods mentioned in chapter 3 were ex-
amined, but only for two designs: small balanced and large unbalanced. Depending on the re-
sults and on the evaluation by other authors (see chapter 2), some methods have been dropped 
from the main study in the second step. For the between subject design these were the log-linear 
model and the probit regression. The  log-linear model, because the type I error rate increased 
beyond 0.10 (for α=0.05) in many situations, which had to be expected from Swafford‘s study 
(1989), and because  most studies prefer the F-test instead, and the probit regression, because 
most authors see advantages for the logistic regression. For the logistic regression, a compromi-
se test has been chosen as ANOVA-like test, composed by the χ2-values of the LR and the Wald 
test with the same degrees of freedom, denoted by WLR: 

The reason: especially for small samples, the LR test behaves rather liberal, while the Wald test 
acts extremely conservative. Concerning split-plot designs, only the GEE method has been 
dropped (for more details see below).

For the GEE and GLMM analysis it was necessary to select a suitable method and function in 
the preliminary study to apply them in R. For the GLMM analysis all three estimation methods 
together with the Wald tests mentioned in chapter 3 were compared. The only satisfying pro-
cedure was REML (R function glmer), which held the error rates under control on the whole. 
But, unexpectedly, it is the Type II Wald test, which managed also the case of a significant in-
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teraction. In contrast, the other ANOVA-type tests as well as the other two GLMM methods re-
vealed exploding error rates with increasing sample sizes. Therefore GLMM in conjunction 
with the Type II Wald test is chosen for the main study, supported by the positive judgements 
by McNeish & Stapleton (2016), McNeish & Harring (2017),  Oberfeld & Franke (2012) and 
Jaeger (2008), and despite the computational problems cited previously and confirmed in the 
preliminary step.

For the choice of the GEE procedure, the focus has been laid upon the different estimation 
methods for the covariance matrix Vβ of the parameter estimates . First, as a basis for the 
estimation of the parameters themselves, the method by Prentice & Zhao (1991) was applied. 
All 9 methods described by Wang et al. (2016) were compared. In general the solutions from 
Pan & Wall (2001), Gosho et al. (2014) and Wang & Long (2011), which obtain their estimates 
by pooling observations across different subjects, as well as the method by Morel et al. (2003), 
have the most benevolent behavior. As to be expected: the ANOVA-like tests by Fan & Zhang 
(2014) show generally much smaller error rates than the Wald test, but with the disadvantage of 
an also much smaller power. For the first three methods additionally the ANOVA-type test by 
Pan (2001) was computed, which is able to control the type I error rate in a same way as the one 
by Fan & Zhang (2014), but shows on the other side clearly better power rates. The error rates 
and power for the previously mentioned four methods, together with the one by Liang & Zeger, 
and applied to the ANOVA-type tests by Wald, Fan & Zhang and Pan are to be found in ap-
pendixes B9 and B10. These show that the type I error rates rise sometimes up to over 50 percent 
(see 7.3 and 7.6 in B9), even for the best performing GEE methods and ANOVA-like tests. As 
a consequence from these experiences, the computational problems with the estimation of the 
covariance matrices, and the observation that GEE tends to exceed the type I error rates for 
small samples (see chapter 2), this method has been dropped from the main study.

Computational aspects concerning the data generation and the selection of ANOVA procedures 
are to be found in the last chapter.

5. Results
Tables and Graphical Illustrations

The following remarks represent only a small extract from the numerous tables and graphics 
produced in this study and will concentrate on essential and perhaps unexpected results. All 
tables and corresponding graphical illustrations are available online (see address below). These 
report the proportions of rejections of the corresponding null hypothesis, for different models 
and nij = 5,10,..,50. They are structured as follows:

Results from the main study (α=0.05)
(for all methods considered, in 2*4 and 4*5 as well as balanced and unbalanced designs):
• B 1: type I error rates for fixed nij in between subject designs,
• B 2: power in relation to nij in between subject designs,
• B 3: type I error rates for fixed ni in mixed designs,
• B 4: power in relation to ni in mixed designs,
Results from the preliminary study (generally at α=0.05, some also at α=0.01)
(for all methods in 2*4 balanced and 4*5 unbalanced designs):
• B 5: type I error rates of all methods for fixed nij in between subject designs,
• B 6: power of all methods in relation to nij in between subject designs,
• B 7: type I error rates of all methods for fixed ni in mixed designs,
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• B 8: power of all methods in relation to ni in mixed designs,
• B 9: type I error rates of selected GEE methods for fixed ni in mixed designs,
• B 10: power of selected GEE methods in relation to ni in mixed designs,
All references to these tables and graphics will be referred as B n.n.n. All tables and graphics 
can be viewed online: http://www.uni-koeln.de/~luepsen/statistik/texte/comparison-tables/. A 
note to the figures which show the behavior of the type I error rates: first they have been smoo-
thed using moving averages over the range of ni=5,..,50 to suppress spurious values, then the 
maximum of the 10 values has been chosen.

Criteria

A deviation of 10 percent (α + 0.1α) - that is 5.50 percent for α=0.05 - can be regarded as a 
stringent definition of robustness, whereas 25 percent (α + 0.25α) - that is 6.25 percent for 
α=0.05 - can be treated as a moderate robustness (see Peterson, 2002). It should be mentioned 
that there are other studies in which a deviation of 50 percent, i.e. (α 0.5α), Bradleys liberal 
criterion (see Bradley, 1978), is regarded as robustness. In this study Peterson‘s moderate 
robustness will be applied, i.e. an acceptance interval [3.75 , 6.25]. As the results concern the 
error rates for 10 sample sizes nij = 5,...,50, it seems reasonable to allow a couple of exceedances 
within this range. The following remarks concern the results for tests at α=0.05. As noted in se-
veral other studies (see e.g. Luepsen, 2017) nearly all tests behave more liberal at α=0.01. Con-
cerning the binomial probabilities p the values 0.8 and 0.9 are used, reminding that these are 
equivalent to 0.2 and 0.1. 

5. 1 Results I: between subject designs

The most exciting question is: how behaves the parametric F-test in those cases which were not 
treated by Lunney (1979)? These are small samples (N 20), unbalanced designs and the influ-
ence of nonnull effects of other factors. The control of the type I error rate is guaranteed, even 
for small N=10, as long as 0.3 p 0.7, while for extreme p 0.8, respectively p 0.2, the rates 
for the interaction effect rise up to 7 (for p=0.8) and 10 (for p=0.9), if there is a nonnull main 
effect (see table 2 and appendix table B 1.7 and 1.9). And this occurs even for balanced designs. 
This accords with the requirement of the classical ANOVA for safe tests: equal variances. A 
more detailed inspection revealed, that this is mainly due to the larger number of cells, as it 
occurs only for large designs (see figure 2). More severe violations occur in unbalanced designs, 
if ni and pi are dependent and p 0.8, the case of negative or positive pairing. Here the type I 
error rates for the test of a main or interaction effect do not lie any longer in the interval of 
robustness. E.g. in the case of a significant factor A, even for a small ratio max(ni)/min(ni) of 
1.3, the rates for the test of main effect B rise to nearly 12 (see table B1.3), and to 15 for the test 
of interaction AB, if ni and pi are positively correlated, and fall to 2, if they are negatively cor-
related (see B 1.8). Similar results are obtained for the tests of the main effects, if the interaction 
AB is significant (see B1.5 and figure 1). It should be remarked that the violations are inde-
pendent of the cell frequencies 5,...,50. 

Considerably better performs Puri & Sen‘s L statistic in these situations of heterogeneity, 
because it exceeds only for p=0.9: with values near 7 (see B 1.3, 1.8 and 1.5) for the tests of the 
main effects and with values near 9 (see B 1.8 and 1.10) for the tests of the interaction. The only 
method that keeps the type I error rate without exceptions, is Brunner & Munzel‘s ATS. Both 
results confirm the findings cited in chapter 2. The logistic model together with the proposed 
WLR-test is able to control the type I error, except in one situation: if there is a nonnull interac-
tion effect. Then the error rates rise up to values between 10 and 20, mainly in unbalanced de-
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signs (see B 1.4 and 1.5). Additionally there are serious exceedances of the error rate for the test 
of the interaction, if both main effects are significant. These models have not been considered 
in the literature, and therefore the rating of the LR diverges here. The results suggest that the 
logistic approach is no alternative to the F-test.      

Figure 1: Maximum type I error rates over the range ni=5,..,50 for p=0.5,..,0.9: 
for the test of the interaction AB when one main effect is nonnull (left), and 
for the test of a main effect if the interaction AB is nonnull (right), 
both in between subject designs, when ni and pi are not independent.

Concerning the power, the parametric F-test is always among the best performers. Puri & Sen‘s 
L statistic has nearly identical rates. Only for the test of the interaction the rates lie sometimes 
below those of the F-test for small ni: about 20% for ni=5 and about 10% for  (see B 2.5). 
Apparently the L statistic performs better for binary variables than for metric outcomes when 
comparing these results with those cited by Sawilowski (1990). The ATS is able to keep up only 
in balanced and small unbalanced designs, whereas in large unbalanced designs the rates are by 
far the lowest, mostly for smaller samples: for ni=5 (p=0.5), for  (p=0.8) and  
(p=0.9). Here the rates lie between 20% and 60% below those of the F-test (see e.g. B 2.1 and 
2.2). This reassures the results cited in chapter 2, among others by Richter & Payton (1999). 
Compared with the other methods, the logistic model exhibits in all situations an unsatisfying 
performance in respect to the power. 

5. 2 Results II: mixed designs

Split-plot designs, as mixed designs are often called, require a more detailed analysis, because 
first, the factors A and B are not exchangeable, and secondly, the correlation structure of the 
repeated measurements has to be taken into account. At first the case of equal correlations will 
be regarded.

The F-test controls the type I error fairly well, in balanced and unbalanced designs, but with the 
exception of the interaction effect, if there are also other nonnull effects. Together with a non-
null trial effect, the test of AB reacts slightly liberal for extreme p=0.9 with rates between 7 and 
8 (see B 3.11.). In this case the Huynh-Feldt adjustment is to prefer. A similar behavior can be 
observed, if there is a grouping effect with independent pi and ni. But here the multivariate test 
is the only alternative (see B 3.9.1). A detailed look into the results exhibits again, that mainly 
the size of the design is responsible for the violations cited above. Things look worse, if in 
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unbalanced designs the grouping factor A has a nonnull effect, which leads to heterogeneous 
variances, and the pi coincide with the ni, the case of negative pairing. For positively correlated 
ni and pi the type I error of the F-test shows rates between 15 and 20, rising with increasing p 
0.5 -> 0.9 (see figure 3), and for negatively correlated ni and pi rates below 2 (see B3.10). And 
unfortunately neither the Huynh-Feldt adjustment, nor Hotelling-Lawley‘s multivariate test, nor 
Koch‘s procedure are able to reduce the rates clearly for p > 0.6. Here also the violations are 
independent of the cell counts 5,...,50. In these situations the only methods, which remain 
completely unaffected, are the ATS and GLMM (see figure 3).

Figure 2: Maximum type I error rates over the range ni=5,..,50 vs. the number of cells (8,.., 20) 
for the test of the interaction AB in a balanced design, if there is of a nonnull grouping factor 
A, for p=0.8, in between subject designs (left) and mixed designs (right).

A look onto the other methods: Puri & Sen‘s L statistic behaves very similar to the parametric 
F-test, with the advantage of somewhat lower error rates, though still beyond the limit of mo-
derate robustness in the cases mentioned above. While several authors observed a sensitive 
reaction to unequal variances (e.g. Feir & Toothaker, 1974), the findings here show, that the vi-
olations of the type I error are essentially independent of p, and therefore independent of the 
heterogeneity. Whereas for the above noted methods predominantly only the tests of the re-
peated measurements effects react sometimes too liberal, it is vice versa with the ATS: only for 
the test of the grouping effect A the error rates pass beyond the limit of robustness, with values 
up to 12, but mainly for  (see B3.1 to 3.3). Here the violations are more severe for 
unbalanced than for balanced designs. The authors themselves (Brunner et al., 1999a) reported 
this problem. But unfortunately Brunner & Munzel‘s test has a problem with interaction effects, 
as it is based on the unweighted means analysis as mentioned before. This leads to a dilemma 
when analyzing unbalanced, mainly small designs: if the ATS shows significant results for the 
trial main and the interaction effect, it cannot be excluded that the outcome for B is due to a non-
null interaction effect. In contrast, the test of the grouping factor is not affected by the interac-
tion. In addition the results of the ATS for the affected tests of the trial factor are issued based 
on unadjusted  interaction effects abij (labelled in the tables as ATS uncorr), which exhibit the 
complete control of the type I error.

Also the GLMM model has deficiencies relating to the type I error: if one factor has a nonnull 
effect, the main effect of the other factor shows sometimes increasing rates (7-10) for ni -> 50 
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for unbalanced designs (see tables B 3.2 and 3.5). Additionally there are some violations, with 
rates near 7, for the tests of the interaction, but surprisingly only for p=0.5 (see tables B 3.8 and 
3.9). On the other side: the GLMM never exceeds the type I error for correlated ni and pi, though 
the rates stay below 2.5 for . The experiences made here cover overall the results by 
McNeish & Harring (2017) and other authors cited in chapter 2. As can be concluded implicitly 
from the remarks in the previous paragraph, the H-F, the multivariate test as well as Koch‘s pro-
cedure show a perfect type I error performance, except for the interaction effect if ni and pi are 
positively correlated. Apart from the last remark, the findings here, a sometimes liberal F-test 
and correct tests by Huynh-Feldt, Hotelling-Lawley and Koch, cover most of the results from 
the literature cited in chapter 2, e.g. those by Oberfeld & Franke (2013) as well as Stiger et al. 
(1998). Howeverthe outcome here presents a better type I error control of the multivariate test, 
especially for the case of unequal correlations. Finally one phenomenon concerning all tests, ex-
cept GLMM, in small balanced designs: for very small samples ( ni=5) and extreme p (0.9) the 
tests react extremely conservative, mostly with rates below 2. 

At this point it should be reminded of the disappointing type I error control of the GEE method. 
Even the best performing procedures by Gosho et al. and by Wang & Long in conjunction with 
the ANOVA tests by Wald or Pan (see chapter 4) are not able to keep the type I error rate in an 
acceptable range for the test of a main effect, if there is a nonnull interaction, a model that has 
been rarely included in other simulation studies. In fact, for all methods and ANOVA-like tests 
the error rates rise up to over 50 percent for ni=50 (see 7.3 and 7.6 in B9), even for equal ni.  

Figure 3: The maximum of the type I error rates over the range ni=5,..,50 for p=0.5,..,0.9: 
for the test of the interaction AB (left) and for the test of main effect B (right), both in mixed 
designs, when the effect of grouping factor A is nonnull and when ni and pi are not independent.

Concerning the power, also for mixed designs the parametric F-test is always among the best 
performers. The power of the other methods will be related to that of the F-test, where only those 
situations are of interest, where the considered procedure does not offend the type I error 
seriously. Puri & Sen‘s L statistic as well as Huynh Feldt‘s correction for the tests of the trial 
effects can keep up with the parametric F-test in all models and situations. In contrary, Ho-
telling-Lawley‘s multivariate test has often a power superior to the F-test, especially for large 
designs, e.g. for A and AB with rates of up to 50% higher than those of the F-test (see e.g. B 
4.1.2 and B 4.3.2), but sometimes also a power clearly smaller than that of the F-test, e.g. for B 
with rates of 50% below (see e.g. B 4.2.2), but mainly for small ni 20. Occasionally the power 
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achieves only 10% of that of the F-test for ni=5, which covers the findings of Stiger et al. (1998) 
in part. Generally the multivariate test performs best for ni 15 and in large designs (see e.g. 
figure 4), which has been remarked also by other authors. Because of the problems listed in the 
previous paragraph, the ATS is only of interest for correlated ni and pi, though its power rates 
lie often up to 50% below those of the parametric tests (see e.g. B 4.4). Koch‘s procedure per-
forms very similar to the multivariate test, which is not surprising, because it is based on a 
nonparametric MANOVA. It can keep up with the F-test in many situations, especially for the 
test of A, while for B and AB it needs larger samples (ni 15). Finally, the GLMM has a disap-
pointing power on the whole, though with a couple of exceptions: e.g. for 0.3 p 0.7, 
especially for the interaction effect. One remark concerning all methods: in small designs the 
power for A and AB is about 20-30% higher in the case of equal ni than in the case of unequal 
ni, whereas in large designs the rates are rather similar.      

Figure 4: Relative power computed as the percentage of the mean power averaged over the 
7 methods in the range of ni=5,..,30 for factors A and B and the interaction AB, for p=0.5 and 
large unbalanced designs, with equal and unequal correlations of the repeated measurements,
showing the good performance of H-F and the multivariate test, the lower rates of Koch‘s pro-

cedure for small ni and the poor overall performance of the ATS.

An interesting question might be: how large is the effect of unequal correlations of the repeated 
measurements in split-plot designs? The parametric F-test and the L statistic show about 15-
20% higher type I error rates, and therefore also more violations (see figure 5). This had been 
observed previously by Harwell & Serlin (1994). Also in this case the interaction effects are 
affected, even for p 0.8, with rates up to 11. It occurs only in large designs, as in the case of 
equal correlations. In most circumstances Huynh Feldt‘s correction, the multivariate or Koch’s 
procedure are preferable. However, in the case of a nonnull grouping effect, the multivariate test 
is the only alternative. Also in the instance of positively correlated ni and pi, the results are iden-
tical to those for the case of equal correlations. Generally, the ATS, Koch‘s test and GLMM ex-
hibit no tendency concerning the error rates. Harwell & Serlin reported also a decreasing power 
for raising covariance heterogeneity. This study confirms this only partly: unequal correlations 
lead to a loss of about 20% of power for all methods, but only for the test of A, and for the test 
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of AB if A has a nonnull effect. In contrast, there is a reverse impact on the power for B. Here 
the F-test shows about 10-20% higher rates. This corresponds to its behavior concerning the 
type I error in these situations. For the interaction AB, there is no definite tendency observable, 
if A has no effect (see also table 1). Finally it should be remarked, that the results are very 
similar for two other correlation structures, which have been examined for a selection of mo-
dels: ascending correlations r=(0.2, 0.4, 0.5, 0.7) and unstructured correlations r=(0.2, 0.6, 0.1, 
0.4). 

6. Conclusion and practical aspects
In between subject designs the F-test has complete control of the type I error only if 0.3 p 0.7. 
Even for p=0.8 and equal cell counts one has to accept slight exceedances. The better selection 
is Puri & Sen‘s L statistic, which controls the type I error in nearly all situations. Another ar-
gument in favor of the L statistic is the overall excellent power, at least for ni 15, and in most 
cases even for ni 10. Although Brunner & Munzel‘s ATS has a complete control of the type I 
error rate, it is no good choice because of its poor power. And finally, the logistic regression has 
unacceptable error rates rising up to 10 and beyond (ni->50) in a couple of situations listed in 
the previous chapter. This makes this procedure, which was made especially for binary va-
riables, a dangerous choice. All in all Puri & Sen‘s L statistic seems to be the best overall recom-
mendation. 
   

Figure 5: Maximum type I error rates over the range ni=5,..,50, with equal and unequal corre-
lations of the repeated measurements, in large unbalanced designs, for the effects of factor B 

and interaction AB, both with nonnull effects of factor A, showing particularly the larger rates 
for the F-test in case of unequal correlations and the robustness of the multivariate test.

Also in mixed designs the F-test has complete control of the type I error only if 0.3 p 0.7, or 
if the design is balanced with a small the number of cells ( 15). On the other hand, it is only 
the test of the interaction for which the F-test cannot control the error rates. As a consequence, 
in some situations, e.g. in unbalanced designs with p outside of the interval [0.3 , 0.7], other 
methods should be chosen. As long as ni and pi are not correlated, either the H-F adjustment, 
the multivariate test or Koch‘s ANOVA are a good choice, whereas Puri & Sen‘s L statistic 
reacts slightly liberal. Nevertheless there is one situation, where the multivariate test is the only 
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acceptable alternative: for the test of AB in large designs, if p 0.8 and A has a nonnull effect. 
Regarding the power, the H-F can keep up with the F-test on the whole the best, particularly for 
small ni 10. Now to the challenge of positively correlated ni and pi. The case 0.3 p 0.7 can 
still be handled by the H-F, multivariate and Koch‘s procedure (see B 3.6, 3.10.1 and 3.10.2). 
For p 0.8 the only methods without problems with the test of AB are ATS and GLMM. As 
their power differs considerable, the ATS should be preferred. Because of the poor power of the 
ATS, with a loss of about 50%, its use should be restricted to this condition.

Beside this, the F-test behaves generally more liberal in large designs (with more than about 15 
cells) in the case of between subject designs, but even more in mixed designs (see figure 2), 
especially for the tests of the interaction effect (see e.g. table 2). But in these situations there are 
recommendable alternatives: the L statistic in grouping designs, and the multivariate ANOVA 
with its superior power in larger split-plot designs (with the restriction of ni 10) or the Huynh-
Feldt adjustment for the F-test, which achieves the power of the F-test (for small ni ).

The final recommendation, first for between subject designs: if the relative frequencies p of the 
two values of y lie within the interval [0.3 , 0.7], the parametric F-test may be used without risk. 
For values outside this range Puri & Sen‘s L statistic should be the choice, even for equal cell 
frequencies. For mixed designs there is no unique method to recommend. The F-test is an ap-
propriate choice, if either the frequencies of y lie within the interval [0.3 , 0.7], or if a balanced 
design with a maximum of 15 cells is the basis. In addition, the F-test may always be applied 
for the test of the main effects. On all other occasions either Huynh-Feldt‘s adjustment for the 
F-test,  Hotelling-Lawley‘s multivariate test or Koch‘s ANOVA is recommended, with a prefe-
rence for the H-F in small designs and for small samples ni 10 and for the multivariate 
approach in case of large designs. But with the following exception: if the relative frequencies 
of y for the levels of A are not equal, larger than 0.8 (respectively smaller than 0.2) and posi-
tively correlated with ni, then either the ATS or the GLMM should be applied for the tests of 
the interaction AB, with a preference for the ATS.

7. Programming
This study has been programmed in R (version 3.3.2 and later 3.3.3). For the data generation 
two different functions had been applied: runif in the case of between subject designs to 
generate uniform distributed data, which were split into two groups at the desired cutpoint p, 
and rmvbin from the package bindata for split-plot designs (see Leisch et al. 1998), which 
is based on the generation of multivariate correlated normal samples and allows the creation of 
binary variables with specified percentages of pi and specified correlations. 

Various functions had been chosen to analyze the simulated data: the function aov in combina-
tion with drop1 (to receive type III sum of squares estimates in the case of unequal cell counts) 
for the standard ANOVA F-test, an own function np.anova for the factorial Puri & Sen-tests, 
also an own function ats.2 for the ATS method in between subject designs - meanwhile an 
appropriate package GFD is supplied in R, and the function nparLD from the package nparLD 
for ATS in mixed designs. The logistic and probit regression had been performed with glm, the 
χ2-tests with chisq.test and loglin, and the multivariate Hotelling-Lawley test with the 
functions lm and anova. For Koch‘s nonparametric analysis of a split-plot design again an 
own function koch.anova had been chosen. For the analysis of GLMM models the following 
functions had been applied: glmer (R package lm4), which is based on restricted maximum 
likelihood estimation (REML) using a bounds constrained quasi-Newton method (nlminb, by 
means of R function optimx from package optimx), glmmPQL (R package MASS), which 
uses Penalized quasilikelihood estimation, and glmmML (R package glmmML), which applies 
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adaptive Gauss-Hermite quadrature. For the analysis of GEE models the function geeglm (R 
package geepack), based on the estimation method by Prentice & Zhao (1991), had been ap-
plied for the parameter estimation. Additionally, the functions from the package geesmv  had 
been used to estimate the covariance matrix according to the 9 methods described in Wang et 
al. (2016), however with a modification, in order to handle failures in the estimation process. 
For the own functions see Luepsen (2014).

Some of the computations had been performed on a Windows notebook, but for the major part 
the high performance cluster CHEOPS of the Regional Computing Centre (RRZK) of the uni-
versity of Cologne had been used. I would like to thank the staff of the RRZK for their technical 
support as well as Prof. Unkelbach for his organizational support. 

       

Table 2: Maximum smoothed type I error rates for all methods in all situations 
(between subject designs and p=0.9),

 for small and large designs plus balanced and unbalanced designs with independent ni and pi, 
as well as for negative pairing (ni ~ pi) and positive pairing (ni | pi) in large designs. 

     

effect  model
parametric Puri & Sen ATS logistic

small large small large small large small large
A 5.41 5.50 5.94 5.27 5.29 5.27 3.94 4.04
B (A sig, ni and pi  indep) 5.62 5.31 3.66 3.45 4.62 5.10 4.37 6.54

A (AB sig) 5.95 5.42 4.82 3.96 5.62 4.80 25.65 12.31
AB 5.52 5.59 5.67 5.36 5.17 4.84 4.12 3.52
AB (A sig, ni and pi  indep) 6.00 9.09 3.98 5.60 3.34 5.44 0.10 0.29

AB (A sig, B sig) 7.12 8.45 5.50 5.84 5.85 5.80 4.65 5.09
ni ~ pi ni | pi ni ~ pi ni | pi ni ~ pi ni | pi ni ~ pi ni | pi

B (A sig, ni and pi  dep) 10.94 3.24 7.07 1.75 4.74 4.67 6.04 4.41

AB (A sig, ni and pi  dep) 14.90 5.29 9.18 2.84 4.15 4.24 0.22 0.12

equal unequal equal unequal equal unequal equal unequal

A 5.29 5.50 5.27 5.94 5.27 5.29 4.04 3.80
B (A sig, ni and pi indep) 5.62 5.28 3.66 2.94 5.10 4.62 6.54 5.61

A (AB sig) 5.42 5.95 4.35 4.82 4.89 5.62 12.93 25.65
AB 5.52 5.59 5.45 5.67 5.17 4.33 4.12 2.77
AB (A sig, ni and pi  indep) 8.94 9.09 5.60 5.23 5.41 5.44 0.29 0.27

AB (A sig, B sig) 7.12 8.45 5.50 5.84 5.85 5.80 4.65 5.09

effect  
model corr p

parametric param/HF multivariate Puri & Sen ATS Koch GLMM
smll lrg smll lrg smll lrg smll lrg smll lrg smll lrg smll lrg

A 0.3 .5 5.7 5.7 5.7 5.2 5.5 5.5 11.0 14.8 5.3 5.6 7.5 6.9
.8 5.4 5.0 5.4 5.3 5.3 4.9 10.9 10.2 5.2 5.0 5.1 4.9
.9 5.2 5.0 5.2 5.3 5.2 5.0 9.5 6.2 5.4 5.4 5.5 2.1

ne .5 5.5 6.4 5.5 5.3 5.3 5.5 11.9 15.5 5.2 5.2 8.8 7.6
.8 5.4 5.3 5.4 5.2 5.3 5.0 10.5 8.9 5.2 5.2 3.0 2.9
.9 5.2 5.1 5.2 5.3 5.1 4.8 9.5 6.2 5.6 4.8 9.6 4.5
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Table 1: Maximum smoothed type I error rates for all methods in all situations (mixed designs).
Effects in brackets indicate other nonnull effects in the model.
Above: for small and large designs with independent ni and pi ,
below: for negative pairing (ni ~ pi) and positive pairing (ni | pi) in large designs.  

A (B) 0.3 .5 5.4 5.4 5.4 5.3 5.3 5.2 10.7 13.0 5.3 5.3 7.1 5.7
.8 5.3 5.5 5.3 5.3 5.2 5.1 11.9 10.9 5.3 5.1 5.8 6.3
.9 5.3 5.4 5.3 5.3 5.3 5.2 11.2 8.4 5.6 5.2 3.6 3.2

ne .5 5.8 5.8 5.8 5.7 5.5 5.5 12.5 14.5 5.6 5.5 9.3 8.8
.8 5.0 5.3 5.0 5.3 4.8 5.0 11.0 9.0 5.5 5.2 3.3 6.8
.9 5.0 4.8 5.0 5.1 5.0 4.9 8.9 7.0 5.2 5.2 4.0 2.0

A (AB) 0.3 .5 5.6 5.8 5.6 5.5 5.2 5.2 11.3 14.2 5.5 5.4 3.7 3.9
.8 5.3 5.5 5.3 5.5 5.2 5.2 11.5 10.3 5.2 5.3 7.3 3.4
.9 5.1 5.3 5.1 5.3 5.0 5.0 9.6 7.5 5.4 5.4 7.3 5.6

ne .5 5.6 5.6 5.6 5.3 5.0 5.2 12.4 14.9 5.2 5.4 6.0 3.3
.8 5.4 5.3 5.4 5.2 5.3 5.0 10.2 9.9 6.2 6.6 6.0 2.8
.9 5.2 5.4 5.2 5.2 5.1 5.2 8.1 8.0 6.2 7.1 4.0 2.9

B 0.3 .5 5.3 5.3 5.4 5.4 4.9 5.3 4.9 5.2 5.8 5.2 4.6 4.9 6.3 6.4
.8 4.9 5.5 4.7 5.4 4.8 5.9 4.8 5.4 4.8 5.4 4.4 5.8 4.2 4.4
.9 4.9 5.1 4.4 4.7 5.2 5.6 4.8 4.9 4.1 4.6 4.7 5.1 5.8 2.9

ne .5 5.7 6.7 5.1 5.7 4.8 5.8 5.5 6.7 5.3 5.7 4.5 5.5 5.6 6.9
.8 5.4 6.4 4.4 5.5 4.6 5.3 5.2 6.3 4.4 5.5 4.4 5.1 5.9 3.9
.9 5.4 5.6 4.2 4.5 3.6 4.6 5.1 5.4 4.1 4.3 3.3 4.4 9.9 7.4

B (A) 0.3 .5 5.2 5.7 5.2 5.6 5.3 5.5 5.2 5.5 5.2 5.5 5.0 5.1 6.3 5.6
.8 5.5 5.4 5.2 5.2 5.7 5.9 5.2 5.3 5.2 5.2 5.1 5.1 5.7 5.2
.9 5.5 5.6 5.1 5.1 6.2 5.9 5.4 5.4 5.0 4.8 5.2 4.8 4.9 3.6

ne .5 5.9 6.6 5.2 5.6 5.5 5.5 5.7 6.1 5.3 5.4 5.2 5.3 4.8 5.5
.8 6.2 6.2 5.5 5.5 5.3 5.5 6.0 6.0 5.6 5.5 4.6 4.8 7.7 5.8
.9 5.5 6.4 4.2 5.2 4.8 5.6 5.2 6.1 4.3 4.9 3.6 5.0 9.8 6.3

B (AB) 0.3 .5 5.3 5.9 5.3 5.9 5.5 5.4 4.1 4.8 28.0 5.6 4.1 4.2 4.3 3.6
.8 5.7 5.4 5.6 5.0 5.8 5.6 4.7 4.8 23.6 5.0 4.7 4.3 5.1 4.9
.9 5.3 5.5 5.0 4.9 5.7 6.3 4.5 4.8 17.9 4.9 4.7 5.0 5.6 13.9

ne .5 5.6 7.3 5.0 6.2 4.8 5.1 4.5 6.2 24.1 6.0 3.7 3.9 3.6 4.9
.8 5.6 6.4 4.6 5.1 4.7 5.1 4.3 5.6 17.3 5.1 3.8 4.3 7.2 4.2
.9 5.6 6.4 4.6 5.1 4.3 5.6 4.8 5.8 10.4 5.1 3.5 4.8 10.0 8.1

AB 0.3 .5 5.7 5.8 5.6 5.8 5.5 5.3 5.6 5.8 5.7 5.7 5.2 5.2 7.0 8.7
.8 5.4 5.8 5.2 5.5 5.2 5.4 5.3 5.4 5.2 4.6 5.1 5.0 4.8 3.9
.9 5.5 6.8 5.2 5.0 5.0 5.2 5.0 5.4 5.2 4.4 4.5 4.6 5.9 3.0

ne .5 5.2 7.2 4.5 6.1 4.9 5.8 5.1 7.0 4.8 4.9 4.6 5.3 5.7 8.3
.8 6.1 6.7 5.4 5.5 5.3 5.3 6.1 6.7 5.2 4.4 5.0 4.8 6.4 5.9
.9 6.0 8.6 4.7 5.1 4.4 4.7 5.8 6.7 4.3 4.0 4.1 5.4 9.7 5.9

AB(A) 0.3 .5 5.1 5.4 5.2 5.3 5.3 5.6 5.1 5.2 5.2 5.0 4.9 5.1 7.0 7.2
.8 5.6 7.1 5.3 6.6 5.9 5.4 5.2 6.5 5.3 4.7 6.4 6.7 1.8 1.7
.9 5.7 8.1 5.4 7.6 6.0 5.7 5.4 7.7 5.4 4.7 6.5 7.9 2.2 0.9

ne .5 5.7 6.8 4.9 5.9 5.1 5.5 5.5 6.7 5.1 5.4 4.8 5.0 5.6 7.9
.8 6.2 8.4 5.3 6.4 5.9 5.7 5.9 7.5 5.3 5.0 5.9 6.7 2.6 2.3
.9 5.6 10.8 4.4 7.7 4.4 5.2 5.2 9.2 4.6 4.5 4.7 7.8 5.5 2.7

AB(B) 0.3 .5 5.5 5.3 5.6 5.4 5.4 5.7 2.8 2.2 5.6 5.1 5.1 5.0 7.7 7.1
.8 6.2 6.1 5.1 5.2 5.3 5.3 3.8 3.4 6.3 4.9 5.1 4.9 2.7 2.4
.9 7.0 7.7 5.1 6.1 3.8 5.1 4.3 4.0 6.9 5.1 5.8 5.6 3.8 2.7

ne .5 5.8 6.4 5.2 5.3 5.0 5.3 3.8 3.7 5.4 5.0 4.8 4.6 6.9 8.4
.8 6.6 7.8 5.4 5.6 4.7 4.9 5.0 4.9 5.6 4.8 4.4 4.9 6.4 5.3
.9 6.6 8.2 4.7 6.0 4.0 4.9 5.3 6.3 5.2 4.5 4.1 4.9 6.7 5.2

effect  
model corr p

parametric param/HF multivariate Puri & Sen ATS Koch GLMM
smll lrg smll lrg smll lrg smll lrg smll lrg smll lrg smll lrg
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.8 16.1 2.3 15.4 2.3 11.6 2.4 15.4 2.2 4.7 3.6 15.3 2.2 3.0 1.1
.9 20.7 1.7 19.8 1.6 14.4 1.6 20.3 1.6 4.0 3.5 21.1 1.5 2.2 0.3

ne .5 8.3 5.0 6.7 4.1 6.3 4.2 6.5 6.0 4.6 4.3 6.8 3.5 5.0 4.7
.8 17.9 2.9 14.5 2.2 12.0 2.4 16.4 2.8 4.7 3.5 15.9 1.8 4.9 0.9
.9 24.4 2.1 19.2 1.6 15.1 1.5 21.9 2.1 4.3 3.3 21.9 3.3 3.0 0.6



References 24

location problem, S. N. Roy Memorial Volume, edited by R.C. Bose, et. al.,  

Cleary, P.D. & Angel, R. (1984): The Analysis of Relationships Involving Dichotomous De-
pendent Variables. Journal of Health and Social Behavior, Vol. 25, No. 3, pp. 334-348.

Cochran, W.G. (1950): The Comparison of Percentages in Matched Samples. Biometrika 37, 
pp 256-266. 

Conover, W. J. & Iman, R. L. (1981). Rank transformations as a bridge between parametric and 
nonparametric statistics. American Statistician, 35 (3): pp 124–129.

D'Agostino, R.B. (1972): Relation Between the Chi-Squared and ANOVA Tests for Testing the 
Equality of k Independent Dichotomous Population.  The American Statistician, Vol. 26, 
No. 3, pp. 30-32.

D'Agostino, R.B. (1971): A Second Look at Analysis of Variance on Dichotomous Data, 
Journal of Educational Measurement, Vol. 8, No. 4, pp. 327-333.

Draper, J. F. (1972): A Monte Carlo Investigation of the Analysis of Variance Applied to non-
independent Bernoulli Variables. Annual meeting of the American Educational Research 
Association, Chicago,Illinois 

Emrich L.J. , Piedmonte M.R. (1992): On some small sample properties of generalized estima-
ting equation estimates for multivariate dichotomous outcomes. Journal of Statistical 
Computation and Simulation, 41, 19-29 .

Ernst, M.D. & Kepner, J.l. (1993) A monte carlo study of rank tests for repeated measures de-
signs, Communications in Statistics - Simulation and Computation, 22:3, pp 671-678,

Fan, C., Zhang, D. & Zhang, C.H. (2013): A comparison of bias-corrected covariance estima-
tors for generalized estimating equations. Journal of Biopharmaceutical Statistics 23, 
pp 1172–1187.

Fan, C. & Zhang, D. (2014): Robust small sample inference for generalised estimating equa-
tions: An application of the Anova-type test. Australian & New Zealand Journal of Stati-
stics, 56(3), pp 237–255.

Fay, M. P., Graubard, B. I. (2001): Small-sample adjustments for Wald-type tests using 
sandwich estimators. Biometrics 57, pp 1198–1206.

Feir, B.J., Toothaker, L.E. (1974): The ANOVA F-Test Versus the Kruskal-WallisTest: A 
Robustness Study. Paper presented at the 59th Annual Meeting of the American Educatio-
nal Research Association in Chicago, IL.

Fox, J. (1997). Applied regression analysis, linear models, and related methods. Thousand 
Oaks, CA: Sage Publications.

Fox, J. & Weisberg, S. (2015): Mixed-Effects Models in R, an Appendix to An R Companion to 
Applied Regression. SAGE Publications, Los Angeles.

Gosho M, Sato Y, Takeuchi H. (2014): Robust covariance estimator for small-sample adjust-
ment in the generalized estimating equations: A simulation study. Science Journal of 
Applied Mathematics and Statistics, 2(1), pp 20–25.

Guerin, L., Stroup, W.W. (2000): A Simulation Study to Evaluate PROC MIXED Analysis of 
Repeated Measures Data. Annual Conference on Applied Statistics in Agriculture. 
URL: http://newprairiepress.org/agstatconference/2000/proceedings/15



References 25

Harville, D.A. (1977):  Maximum Likelihood Approaches to Variance Component Estimation 
and to Related Problems. Journal of the American Statistical Association, Vol. 72, No. 
358, pp. 320-338 .

Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C. (1992): Summarizing Monte 
Carlo results in methodological research: The one- and two-factor fixed effects ANOVA 
cases. Journal of Educational Statistics, 17, pp 315-339. 

Harwell, M.R. & Serlin, R.C. (1989): A Nonparametric Test Statistic for the General Linear 
Model. Journal of Educational Statistics, Vol. 14, No. 4, pp 351-371.

Harwell, M.R. & Serlin, R.C. (1994): A Monte Carlo study of the Friedman test and some com-
petitors in the single factor, repeated measures design with unequal covariances, Com-
putational Statistics & Data Analysis, 17, pp 35-49.

Hsu, T.Chi  and  Feldt, L.S. (1969): The Effect of Limitations on the Number of Criterion Score 
Values on the Significance Level of the F-Test, American Educational Research Journal, 
Vol. 6, No. 4 (Nov., 1969), pp. 515-527.

Ito, P.K. (1980): Robustness of Anova and Manova Test Procedures. Handbook of Statistics, 
Vol. 1, (P.R.Krishnaiah, ed.), pp 199-236.

Jaeger, T.F. (2008) Categorical Data Analysis: Away from ANOVAs (transformation or not) 
and towards Logit Mixed Models, Journal of Memory and Language, 59(4): pp 434–446.

Kauermann, G., Carroll, R.J. (2001): A note on the efficiency of sandwich covariance matrix 
estimation. Journal of the American Statistical Association 96:pp 1387–1396.

Kenward, M.G and Jones, B (1992: Alternative approaches to the analysis of binary and 
categorical repeated measurements. Journal of Biopharmaceutical Statistics, 2(2), 
pp 137-170.

Koch, G.G. (1969): Some Aspects of the Statistical Analysis of Split Plot Experiments in 
completely Randomized Designs, Journal of the American Statistical Association, 
Vol 64, No 326, pp 485-504.

Koch, G.G. (1970): The Use of Non-Parametric Methods in the Statistical Analysis of a Com-
plex Split Plot Experiment. Biometrics, Vol. 26, No. 1, pp. 105-128.

Koch, G.G, Landis, J.R et al (1977): A general methodology for the analysis of experiments 
with repeated measurement of categorical data. Biometrics, 33, pp 133-158.

Konietschke, F., Bathke, A.C., Hothorn, L.A., Brunner, E. (2010): Testing and estimation of pu-
rely nonparametric effects in repeated measures designs, Computational Statistics & Data 
Analysis, 54(8):1895-1905.

Leisch, F., Weingessel, A., Hornik, K. (1998): On the Generation of Correlated Artificial Bina-
ry Data. Working Paper Series, Vienna University of Economicsand Business Administ-
ration, URL: http://epub.wu.ac.at/286/1/document.pdf.

Li, P. & Redden, D.T. (2015): Comparing denominator degrees of freedom approximations for 
the generalized linear mixed model in analyzing binary outcome in small sample cluster-
randomized trials. BMC Medical Research Methodology, 



References 26

https://doi.org/10.1186/s12874-015-0026-x

Liang, K.Y. & Zeger S.L. (1986): A Comparison of Two Bias-Corrected Covariance Estimators 
for Generalized Estimating Equations. Biometrika 73,pp 13–22.

Lix L.M., Keselman J.C. and Keselman, H.J. (1996). Consequences of Assumption Violations 
Revisited: A Quantitative Review of Alternatives to the One-Way Analysis of Variance 
F Test. Review of Educational Research, Vol. 66, No. 4, pp. 579-619.

Luepsen, H. (2014): R Functions for the Analysis of Variance.
URL: http://www.uni-koeln.de/~luepsen/R/ .

Luepsen, H. (2015). Varianzanalysen - Prüfung der Voraussetzungen und Übersicht der nicht-
parametrischen Methoden sowie praktische Anwendungen mit R und SPSS.
URL: http://www.uni-koeln.de/~luepsen/statistik/texte/nonpar-anova.pdf
URL: http://kups.ub.uni-koeln.de/6851/1/nonpar-anova.pdf .

Luepsen, H. (2016): The aligned rank transform and discrete variables: A warning, 
Communications in Statistics - Simulation and Computation, 
DOI: 10.1080/03610918.2016.1217014

Luepsen, H. (2017):Comparison of nonparametric analysis of variance methods: A Vote for van 
der Waerden. Communications in Statistics - Simulation and Computation, Volume 30, 
pp 1-30,  DOI: 10.1080/03610918.2017.1353613

Lunney, G.H. (1979): Using Analysis of Variance with a Dichotomous Dependent Variable: An 
Empirical Study. Journal of Educational Measurement, Vol. 7, No. 4, pp. 263-269.

Ma, Y., Mazumdar, M., Memtsoudis, S.G. (2012): Beyond Repeated measures ANOVA: 
advanced statistical methods for the analysis of longitudinal data in anesthesia research, 
Reg Anesth Pain Med, 37(1): pp 99–105.

Malhotra, N.K. (1983): A Comparison of the Predictive Validity of Procedures for 
Analyzing Binary Data, Journal of Business & Economic Statistics, Vol. 1, No. 4, 
pp. 326-336.

Mancl, L. A., DeRouen, T. A. (2001): A covariance estimator for GEE with improved 
smallsample properties. Biometrics 57, pp 126–134.

Mandeville, G.K. (1972): Comparison of Three Methods of Analyzing Dichotomous Data in a 
Randomized Flock Design,  Distributed by ERIC Clearinghouse.

Mansouri, H. , Chang, G.-H. (1995). A comparative study of some rank tests for interaction, 
Computational Statistics & Data Analysis, 19, pp 85-96 

McNeish, D. & Stapleton, L.M. (2016): Modeling Clustered Data with Very Few Clusters, 
Multivariate Behavioral Research, 51 (4), pp 495-518.

McNeish, D. & Harring, J.R. (2017): Clustered data with small sample sizes: Comparing the 
performance of model-based and designbased approaches, Communications in Statistics 
- Simulation and Computation, 46 (2), pp 855-869.

Morel, J.G., Bokossa, M.C., Neerchal, N.K. (2003): Small sample correction for the variance of 
GEE estimators. Biometrical Journal 45, pp 395–409.



References 27

Noguchi, K., Gel, Y.R., Brunner, E., and Konietschke, F. (2012). nparLD: An R Software 
Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments. 
Journal of Statistical Software , 50 (12), pp 1-23.

Oberfeld, D. & Franke, T. (2012): Evaluating the. robustness of repeated measures analyses: 
The case of small sample sizes and nonnormal data. Behavioural Research, 45: pp 792–
812.

Pan, W. (2001): On the Robust Variance Estimator in Generalized Estimation Equations. 
Biometrika 88, No 3, pp 901-906.

Pan, W. & Wall, M.M. (2001): Small Sample Adjustments in Using the Sandwich Variance 
Estimator in Generalized Estimating Equations. Statistics in Medicine, Volume 21, Issue 
10, pp 1429–1441.

Pan, W. & Connett, J.E. (2002): Selecting the working correlation structure in generalized 
estimating equations with application to the lung health study. Statistica Sinica, Vol 12, 
No 2, pp 475-490.

Peng C.Y.J., Lee K.L. , Ingersoll G.M. (2002): An introduction to logistic regression analysis 
and reporting, The Journal of Educational Research, Vol 96, No 1, pp 3-14.

Peterson, K. (2002). Six Modifications Of The Aligned Rank TransformTest For Interaction. 
Journal Of Modem Applied Statistical Methods. Vol. 1, No. 1, pp 100-109.

Pohlmann, John T. & Leitner, Dennis W. (2003): A comparison of ordinary least squares and 
logistic regression. The Ohio Journal of Science. 103.5, pp118-125. 

Prentice, R.L. & Zhao, L.P. (1991): Estimating Equations for Parameters in Means and Cova-
riances of Multivariate Discrete and Continuous Responses. Biometrics, Vol. 47, No. 3, 
pp 825-839.

Puri, M.L. & Sen, P.K. (1985): Nonparametric Methods in General Linear Models. Wiley, 
New York.

Qu, Y., Piedmonte, M.R. & Williams, G.V. (1994): Small Sample Validity of Latent Variable 
Models for Correlated Binary Data. Communications in Statistics - Simulation and Com-
putation, Vol 23, No 1. pp 243-269.

Richter, S.J. and Payton, M. (1999). Nearly exact tests in fact orial experiments  using the 
aligned rank transform. Journal of Applied Statistics, Volume 26, Issue 2, pp. 203-217.

Sawilowsky, S. (1990). Nonparametric tests of interaction in experimental design. Review of 
Educational Research, 60, pp 91–126.

Song, X.Y. & Lee, S.Y. (2006): Model comparison of generalized linear mixed models. 
Statistics in Medicine, 25, pp 1685–1698.

Stiger, R.T., Kosinski, A.S. , Barnhart, H.X. & Kleinbaum, D.G. (1998) Anova for repeated 
ordinal data with small sample size? A comparison of anova, manova, wls and gee metho-
ds by simulation, Communications in Statistics - Simulation and Computation, 27:2, 
pp 357-375.

Swafford, M. (1980): Three Parametric Techniques for Contingency Table Analysis: A Non-
technical Commentary. American Sociological Review, 45, pp 664-690.



References 28

Tandon, P.K. & Moeschberger, M.L. (1989) Comparison of Nonparametric and Parametric 
Methods in Repeated Measures Designs - A Simulation Study, Communications in Stati-
stics - Simulation and Computation, 18:2, pp 777-792.

Tansey, R., White, M., Long, R.G., Smith, M. (1996): A Comparison of Loglinear Modeling 
and Logistic Regression in Management Research. Journal of Management, 22, No 2, 
pp 339-358. 

Thomas, J.R., Nelson, J.K. and Thomas, T.T. (1999): A Generalized Rank-Order Method for 
Nonparametric Analysis of Data from Exercise Science: A Tutorial. Research Quarterly 
for Exercise and Sport, Physical Education, Recreation and Dance, Vol. 70, No. 1,
pp 11-23.

Tomarken, A.J. and Serlin, R.C. (1986). Comparison of ANOVA Alternatives Under Variance 
Heterogeneity and Specific Noncentral Structures. Psychological Bulletin, Vol. 99, No 1, 
pp 90-99.

Toothaker, L.E. and De Newman (1994). Nonparametric Competitors to the Two-Way 
ANOVA. Journal of Educational and Behavioral Statistics, Vol. 19, No. 3, pp. 237-273.

Tuerlinckx, F., Rijmen, F., Verbeke, G. & De Boeck, P. (2006): Statistical inference in 
generalized linear mixed models: A review. British Journal of Mathematical and Stati-
stical Psychology, 59, pp 225–255.

Wang M. & Long Q. (2011): Modified robust variance estimator for generalized estimating 
equations with improved small-sample performance. Statistics in medicine, 30(11), 
pp 1278–1291.

Wang, M., Kong, L., Zheng, L. & Zhang, L. (2016): Covariance estimators for Generalized 
Estimating Equations (GEE) in longitudinal analysis with small samples. Statistics in 
Winer, B.J., Brown, D.R. & Michels, K.M. (1991): Statistical Principles in Expertimental 
Design, McGraw-Hill, New York.

Zhang, H., N. Lu, C. Feng, S. Thurston, Y. Xia, L. Zhu, and X. Tu (2011): On Fitting Generali-
zed Linear Mixed-effects Models for Binary Responses using Different Statistical 
Packages. Statistics in Medicine, 30(20), pp 2562–2572.

Ziegler, A., Kastner, Ch., Blettner, M. (1998): The Generalised Estimating Equations: An 
Annotated Bibliography. Biometrical Journal 40 (2), pp 115-139.


