
Calculation of Densities from Cubic Equations of State: Revisited
Ulrich K. Deiters*

Institute of Physical Chemistry, University of Cologne, Luxemburger Strasse 116, 50939 Köln, Germany

Ricardo Macías-Salinas

ESIQIE, Departamento de Ingeniería Química, Instituto Politećnico Nacional, Zacatenco, Mex́ico D. F., 07738, Mex́ico

*S Supporting Information

ABSTRACT: Cubic equations of state are still much used in chemical engineering. Inverting such an equation, i.e., calculating
molar volumes or densities for given pressure and temperature, is an important and frequently invoked operation. A new
algorithm is proposed, whichon modern computersusually performs faster than other algorithms from the literature.

1. INTRODUCTION
The so-called cubic equations of state are a group of thermal
equations of state having the general structure

=
−

−
+ +

p
RT

V b
a

V f V fm m
2

1 m 2 (1)

where Vm denotes the molar volume, p is pressure, and T is
temperature. R is the universal gas constant and a and b are
substance-dependent parameters; a is usually a function of
temperature. Setting f1 = f 2 = 0 turns eq 1 into the van der
Waals equation, setting f1 = 1 and f 2 = 0 yields the Redlich−
Kwong equation,1 and setting f1 = 2 and f 2 = −1 yields the
Peng−Robinson equation,2 but there are also equations of state
that let the f i depend on the substances, e.g., the Trebble−
Bishnoi−Salim equation.3

All these equations of state have in common that multiplying
them with their denominators yields a cubic polynomial:

+ + + =A V A V A V A 03 m
3

2 m
2

1 m 0 (2)

with

= − + −A f pb RT ab()0 2

= − + +A pf f pb RT a()1 2 1

= − +A pf pb RT()2 1

=A p3

The computation of a molar volume for given temperature and
pressure thus amounts to finding the roots of this polynomial
a mathematical operation for which reliable algorithms exist. It
is therefore not astonishing that cubic equations of state are
frequently used, although they leave much to be desired from
the viewpoint of statistical thermodynamics. Another reason for
the popularity of some cubic equations of state is the availability
of group contribution schemes which allow the prediction of
substance parameters from chemical structures; examples are
the VTPR method (volume-translated Peng−Robinson4,5) and

the PPR78 method (predictive Peng−Robinson (version of
1978)6−8).
Most algorithms for the calculation of phase equilibria of

mixtures require the computation of molar volumes from
pressure at each iteration step [but not all, fortunately; see ref
9]. For complex calculations, for instance in the context of
enhanced oil recovery and reservoir simulations, large numbers
of phase equilibrium calculations have to be performed. Then,
of course, it is worthwhile to explore efficient ways for finding
the roots of cubic polynomials.
In principle, the roots of cubic polynomials can be

determined analytically with the so-called Cardano method.10

But as this method involves the computation of algebraic and
trigonometric functions, there have been several attempts to
develop faster, iterative algorithms. Many of these have been
listed and compared by Olivera-Fuentes,11 but there are also
more recent attempts.10,12

The evolution of computer science over the past decades has
not merely increased the clock frequency of microprocessors,
but also provided them with multiple arithmetic units (so that
some operations can be carried out in parallel), more registers,
and a sophisticated cache managment. It therefore seems
worthwhile to compare the performances of known cubic root
finders again on modern computers and, if possible, to develop
better ones.

2. ITERATIVE CUBIC ROOT FINDERS

We have to stress that the objective of this section is outlining
algorithms which reliably find all real roots of a cubic
polynomial with arbitrary real coefficients. Naturally, simplifi-
cations might be possible if the coefficients are subject to some
restrictions.

Received: November 14, 2013
Revised: December 29, 2013
Accepted: January 10, 2014
Published: January 10, 2014

Article

pubs.acs.org/IECR

© 2014 American Chemical Society 2529 dx.doi.org/10.1021/ie4038664 | Ind. Eng. Chem. Res. 2014, 53, 2529−2536

pubs.acs.org/IECR

The iterative solution of cubic equations requires several
steps: normalization, scaling, initialization, iteration, and
deflation.
2.1. Normalization. The first step of the computation of

the real roots of a general cubic equation

+ + + =A x A x A x A 03
3

2
2

1 0 (3)

is always its normalization, i.e., the division by the coefficient of
the cubic term, which leads to

+ + + = =x a x a x a a
A
A

0 with i
i3

2
2

1 0
3 (4)

Evidently, this step can be omitted if the polynomial is already
normalized.
2.2. Scaling. Some iterative as well as analytic root finders

may eventually become inefficient or even unreliable if the
coefficients ai are either very large or all very close to zero. The
problem can be minimized by a scaling, i.e., by working with the
equation

= + + + =f x x b x b x b() 0sc sc
3

2 sc
2

1 sc 0 (5)

with

λ λ= = −x x b aand i i
i

sc
3

Setting

λ
= | | | | | |a a a

1
max(, ,)0

1/3
1

1/2
2 (6)

ensures that the largest coefficient bi (i = 0, 1, 2) becomes +1 or
−1. This choice for λ, however, requires the computation of
inverse powers, which is a slow operation on most computers.
For practical purposes it is sufficient to extract the exponents of
the digital representations [C, C++: standard library function
frexp()] of the ai, divide them by i, and use the largest value to
scale the coefficients [C, C++: standard library function
ldexp()]. A program code example can be found in section 2
in the Supporting Information.
Evidently, this step can be skipped if the polynomial is

guaranteed to have coefficients always in the range [−1; +1].
The sensitivity of the root finder to scale issues depends very

much on the choice of initial values. This will be addressed in
section 2.3.
2.3. Initial Values. In order to locate the first root of the

cubic equation with an iterative procedure, it is necessary to
have a good initial guess. Figure 1 shows the shapes that a cubic
function can possibly exhibit. There is always an inflection
point, and the slope at this point can be positive, zero, or
negative. Consequently, the function either is strictly
monotonic (cases 3.x), has a saddle point (cases 2.x), or has
both a maximum and a minimum (cases 1.x); in the latter case,
there can be three real roots (cases 1.3−1.5), one root (1.1,
1.7), or two roots, one of them being a double one (1.2, 1.6).
[A double root in a pressure isotherm does not correspond to a
stable state. Nevertheless, a reliable algorithm should treat this
case correctly, for it might occur during the iterative search for a
stable state, or in studies of metastable states and stability
limits.]
2.3.1. Cauchy Initialization. According to a theorem of

Cauchy [also attributed to E. Rouche,́ whoafter Cauchy
proved this to be a special case of his more general theorem on
the roots of complex polynomials], all real roots of an nth
degree polynomial must lie within the range [−r; +r] with

= + | | | |−r a a1 max(, ...,)n0 1 (7)

The inflection point of the cubic polynomial in eq 5 is
located at

= −x
a
3infl

2

(8)

A reliable way of initializing the iteration is starting from x = −r
if f(xinfl) ≥ 0, or from x = +r otherwise. This choice ensures that
there are no extrema between the initial guess and the nearest
root of the cubic polynomial.10,12 We shall refer to this
initialization method as Cauchy initialization (“C”).

2.3.2. Laguerre−Nair−Samuelson Initialization. If there
are three real roots, a narrower range is given by the Laguerre−
Nair−Samuelson criterion, which for a normalized polynomial
is

= − ± − −
−

−
− −x

a
n

n
n

a
n

n
a

1 2
1

n
n nlow,high

1
1

2
2 (9)

Application to eq 5 results in

= ±x x D
2
3low,high infl (10)

with

= −D b b32
2

1

But even if xlow and xhigh can be computed (D > 0), it is not
certain that three roots exist (cases 1.3−1.5 in Figure 1), for
cases 1.1 and 1.7 are possible, too. Still, xlow or xhigh can be used
as initial guesses.

Figure 1. Schematic representation of the various shapes of cubic
functions. (○) Inflection point.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4038664 | Ind. Eng. Chem. Res. 2014, 53, 2529−25362530

If eq 10 has complex solutions only (i.e., if D < 0), the cubic
polynomial does not have any extrema (cases 3.x). Then,
however, it is permissible to use the inflection point as initial
value for the iteration. The resulting initialization scheme is
therefore

=

> ∧ >

<

> ∧ <

⎧
⎨
⎪⎪

⎩
⎪⎪

x

x D f x

x D

x D f x

if 0 () 0

if 0

if 0 () 0

low infl

infl

high infl (11)

Finally, there are some special cases: If f(xinfl) = 0, xinfl is a
root of the polynomial. If D = 0, the inflection point has a zero
slope (cases 2.x), and then the root is at

= −x x f x()infl infl
3 (12)

Evidently, no iteration is required in these two cases.
2.3.3. Vieta Initialization. If a normalized cubic polynomial

has three real roots, its coefficients can be written according to
Vieta’s rules:

= −
= + +

= − + +

a x x x

a x x x x x x

a x x x()

0 1 2 3

1 1 2 2 3 1 3

2 1 2 3

(13)

If there is ony one real root, x1, and two complex ones, x2,3 = α
± iβ, the result is similar:

α β

α β α

α

= − +

= + +
= − −

a x

a x

a x

()

2

2

0 1
2 2

1
2 2

1

2 1

(14)

If |x1| is much smaller than |x2| and |x3|, the terms containing x1
can be neglected in the expressions for a1, and then

≈ −x
a
a1

0

1 (15)

is a good approximation for the (absolutely) smallest root.
Except for some special applications, such as the calculation

of molar volumes from cubic equations of state at very low
pressures (see section 3.1), it is usually not known in advance
that x1 is small in comparison with the other roots. The tests for
the applicability of this initialization scheme are time-
consuming.
2.3.4. “Thermodynamic Initialization”. If cubic equations

are solved in the context of equations of state, it seems logical
to use either zero density (the ideal gas state) or the maximal
density (volume equal to equation of state covolume
parameter) as initial values. But this is dangerous: The iteration
schemes discussed below will converge reliably only if there is
no extremum between the initial value and the nearest root. As
cubic equations of state, except for the van der Waals equation,
can have solutions outside the physically permissible range,
starting the iteration at the “thermodynamic bounds” does not
necessarily prevent the iteration from running into an
extremum and then diverging. [Even the van der Waals
equation of state will have nonphysical roots if invoked for
negative pressure, which can become necessary when
metastable states are studied.]
2.4. Iteration. Once a good initial guess for the first root is

available, an iterative scheme can be used to obtain an accurate

value. Schemes known to give a good speed of convergence are
the following:
1. The Newton−Raphson method, which can be written as

follows:

← −
′

x x
f x
f x

()
() (16)

2. Halley’s method:

← −
′

′ − ″
x x

f x f x
f x f x f x

() ()

(()) () ()2 1
2 (17)

3. The “double Newton−Raphson” method by Olivera-
Fuentes:11

δ
δ δ

δ δ
← +

′ + ″ +

′ + ″ +
()

x x
f x f x

f x f x

() () 2

() (() 3)NR
NR

1
2 NR

NR NR (18)

where δNR = −f(x)/f ′(x) is the correction step of the Newton−
Raphson method.
4. Mollerup’s method:13

δ δ← + −
″
′

⎛
⎝⎜

⎞
⎠⎟x x

f x
f x

1
()

2 ()NR NR
(19)

5. The “modified Richmond” method:14

δ

δ δ
← +

+ +″
′ ′

x x
1 f x

f x f x

NR
()

2 () NR
1
() NR

2
(20)

6. The regula falsi method (so-called Illinois variant), also
known as the secant method, which needs an additional initial
value, x0; the function values y = f(x) and y0 = f(x0) must have
opposite signs:

= −
−
−

x x
x x
y y

ynew 0
0

0
0

(21)

with the replacement rules

← ←
=

←
=

← ←

⎧

⎨
⎪⎪

⎩
⎪⎪

x x y y f x
f x

y y f x
f x

x x y f x

, if sign(())
sign(())

1
2

if sign(())
sign(())

, ()

0 0 new

0

0 0 new

new new

(22)

For initialization we use here the inflection point and either +r
or −r.
7. Steffensen’s method (also known as Aitken’s delta

method),15 which requires the construction of an auxiliary
iteration function, e.g., g(x) = −(x3 + a2x

2 + a0)/a1:

=

=

← −
−

− +

x g x

x g x

x x
x x

x x x

()

()

()
2

1

2 1

1
2

2 1 2

(23)

Of course many more iteration methods can be found in the
literature. Here we confine ourselves to methods which have at
least almost second-order convergence and which can be

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4038664 | Ind. Eng. Chem. Res. 2014, 53, 2529−25362531

proven to converge reliably if there is no extremum between
the initial value and the nearest root.
In this context we have also to mention Muller’s method,16

which is an iterative interpolation scheme like the regula falsi
method, but uses parabolic instead of linear interpolation. As it
involves solving a quadratic equation at each iteration step, it is
slower than the other methods listed above. The Durand−
Kerner method,17 a root finder for polynomials of arbitrary
degree, involves complex-number multiplications and divisions
at each iteration step; not surprisingly, it turned out to be
slower than the other methods by at least 1 order of magnitude.
2.5. Deflation. Once the first real root, x1, is known, the

cubic polynomial can be “deflated”, i.e., divided by a linear
factor. We set

+ + +
−

= + +
x a x a x a

x x
x c x c

3
2

2
1 0

1

2
1 0

(24)

with

= + = +c x a c c x aand1 1 2 0 1 1 1

The roots of the resulting quadratic polynomial (if any) can be
determined from the well-known analytical formula

= − ∓ −x
c c

c
2 42,3
1 1

2

0
(25)

2.6. Remarks. 2.6.1. Evaluation of Polynomials. In order
to save CPU time, Horner’s method should be used to compute
values of polynomials, e.g.

+ + + → + + +A x A x A x A A x A x A xA(())3
3

2
2

1 0 0 1 2 3
(26)

Horner’s method uses the smallest possible number of
multiplications.
2.6.2. Vanishing Third-Order Coefficients. One should

avoid the situation where the third-order coefficient, A3, is
small in comparison with the other coefficients, because then
the normalizing step will make the lower-order coefficients
huge, and that can lead to a loss of precision and even to wrong
results.
This can easily happen in the course of vapor pressure

calculations close to the triple point, where the pressures are
often quite low. If the cubic polynomial is set up according to
eq 2, the pressure becomes the third-order coefficient, resulting
in an ill-conditioned polynomial which cannot be solved
reliably for the roots; even scaling cannot remedy this. Figure 2
illustrates this problem.
Alternatively, the polynomial can be set up in terms of molar

densities ρ = 1/Vm:

ρ ρ ρ+ + + =A A A A 03 2 1
2

0
3

(27)

Now A3 = p is the zero-order coefficient; if it approaches zero,
this will not hamper, but speed up the root finder.
A comparison of ρ-based and Vm-based inversions of the

cubic equation has been published before.10 Incidentally, there
are more advantages to a formulation of thermodynamic
equations in terms of molar densities (see refs 9 and 18
(Chapter 5.8)).
2.6.3. Very Small Roots. The analytical formula for the roots

of the quadratic polynomial, eq 25, obtains them as the sum or
the difference of two terms. If one of the roots is very small, it is
computed as the difference of two almost equal terms, and may

therefore suffer from round-off errors. This problem can be
solved by following the computation of the absolutely smaller
root with a single Newton iteration step. Alternatively, the
problem can be avoided by calculating the smallest root of the
cubic polynomial first (iteratively), which can be achieved by
using Vieta initialization. For the usual “double precision”
arithmetics, this is advisable if |a0/a1| ≤ 10−5.

3. RESULTS AND DISCUSSION
3.1. Computing Precision. The most important question

is, of course, whether iterative algorithms achieve the same
numerical precision as an implementation of the analytical
solution (Cardano’s method). Figure 2, a log p vs T−1

representation of the vapor pressure curve of propane, shows
that this is indeed the case: the results for all iterative methods
discussed in this work neatly coincide from the critical point
down to about 60 K. The only method exhibiting a weakness is
the analytical method of Cardano, which shows deviations
around 70 K, unless a postiteration (one Newton−Raphson
iteration step) is applied.
Cardano’s method applied to the volume polynomial, eq 2,

leads to grave artifacts in vapor pressure calculations at and
below 100 K.
A closer inspection of density calculations at very low

pressures, however, shows that all methods encounter
difficulties here. Tables 1 and 2 contain liquid and vapor
molar volumes of propane, computed with the Peng−Robinson
equation of state2 for pressures along the predicted vapor
pressure curve, using “double precision” arithmetics. The
calculations were performed with ThermoC software.19 These
results merely serve to demonstrate the numerical problems;
we do not claim that the Peng−Robinson equationwith
parameters derived from critical datais accurate at or below
triple point conditions.

Figure 2. Vapor pressure curve of propane, computed with the Peng−
Robinson equation of state.2 () Cardano’s method with
postiteration (one Newton iteration step), all iterative methods of
this work, applied to the density polynomial, eq 27; (···) Cardano’s
method without postiteration; (gray curves) Cardano’s method
applied to the volume polynomial, eq 2, with or without postiteration;
(○) critical point.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4038664 | Ind. Eng. Chem. Res. 2014, 53, 2529−25362532

Evidently, the iterative algorithm using Newton’s method is
not as good at low pressures as the others (or needs more

iteration steps in this pressure range). All high-order iterative
methods give practically the same results, and they agree well
with Cardano’s method. It turns out, however, that the
pressures calculated from the liquid and vapor molar volumes
do not always agree exactly. This phenomenon gets more
pronounced for lower pressures. Unfortunately, it cannot be
resolved by performing more iteration steps, for it is caused by
the structure of the equation of state.
(i) The original cubic equation of state, eq 1, is a difference

of two terms. For the liquid states in Tables 1 and 2, these
terms amount to 237 or 257 MPa, respectively, while their
differences are in the millipascal or even micropascal range and
hence very susceptible to rounding errors.
(ii) For the thermodynamic states in Tables 1 and 2, the a0

coefficient of the normalized cubic polynomial) is of the order
of magnitude of pb/(RT) ≈ 10−12−10−8, whereas the other
coefficients are of the order of magnitude 10−1−100. In this
situation, the evaluation of the polynomial involves the addition
or subtraction of terms of rather different sizes, and this causes
a loss of significant figures.
As a consequence, a molar volume or density that fulfills eq 1

under “double precision” arithmetics does no longer exactly
fulfill eq 27, and vice versa. The numerical problems that all
algorithmsanalytical and iterativeencounter are thus not
due to design flaws of these algorithms, but to the structure of
cubic equations of state. Working in that pressure range would
either require a higher computing precision or a different
equation of state.
On the other hand, the iterative methods studied hereafter

Laguerre−Nair−Samuelson initializationwork reliably for
vapor pressure calculations above 0.25Tc as well as for density
calculations in general. For very low pressures, if |a0/a1| ≤ 10−6,
Vieta initialization is advantageous.

3.2. Computing Speed. For the determination of CPU
times, sets of coefficients were prepared that resulted in
polynoms

• having three real roots (cases 1.2 and 1.4 in Figure 1)

• having one real root and two extrema (cases 1.1 and 1.7)

• or having one real root and no extrema (cases 3.1 and

3.3)

Table 1. Calculation of Liquid and Vapor Molar Volumes of Propane at 100 K and 40.6983 mPa (Approximate Vapor Pressure)
from the Peng−Robinson Equation of State2 via the Density Polynomial, eq 27a

method Vm
1 /cm3 mol−1 Vm

g /cm3 mol−1 pl/mPa pg/mPa

Cardano, postiteration 59.819 34 2.042 953 × 1010 40.697 87 40.698 30
Newton, LNS/i 59.819 34 2.042 128 × 1010 40.838 60 40.714 74
Olivera-Fuentes, LNS/i 59.819 34 2.042 952 × 1010 40.697 87 40.698 32
Halley, LSN/i 59.819 34 2.042 952 × 1010 40.697 87 40.698 32
Halley, V 59.819 34 2.042 953 × 1010 40.697 87 40.698 30

apl and pg, pressures calculated for these volumes. Initialization schemes: LNS/i, Laguerre−Nair−Samuelson/inflection point; V, Vieta.

Table 2. Calculation of Liquid and Vapor Molar Volumes of Propane at 80 K and 35.6663 μPa (Approximate Vapor Pressure)
with the Peng−Robinson Equation of State2 via the Density Polynomial, eq 27a

method Vm
1 /cm3 mol−1 Vm

g /cm3 mol−1 pl/μPa pg/μPa

Cardano, postiteration 58.899 61 1.864 947 × 1013 36.068 84 35.666 30
Newton, LNS/i 58.899 61 1.790 272 × 1013 53.361 02 37.154 00
Olivera-Fuentes, LNS/i 58.899 61 1.864 165 × 1013 36.068 84 35.681 28
Halley, LSN/i 58.899 61 1.864 144 × 1013 36.068 84 35.681 66
Halley, V 58.899 61 1.864 947 × 1013 36.068 84 35.666 30

aSee Table 1 for an explanation of the symbols and abbreviations.

Table 3. CPU Times for the Calculation of All Real Roots of
a Cubic Polynomial Having Three Real Roots (3r+2x), One
Real Root and Two Extrema (1r+2x), or One Real Root and
No Extrema (1r+0x) Using Halley’s Method: Effects of
Scaling and Initialization Schemea

tCPU/ns

initialization scaling λ 3r+2x 1r+2x 1r+0x

C off 1 90−136 110 79−95
off 103 154−453 431 367−402
off 10−3 234 190−207 206−255

C on 131−180 155 138
LNS/i off 1 51−62 67 49

off 103 50−67 71 55
off 10−3 50−67 71 55

LNS/i on 74−87 94 76
V n.a. 32−99 55−370 53−103

aLNS/i, Laguerre−Nair−Samuelson/inflection point; C, Cauchy; V,
Vieta. λ, scaling factor; see section 3 for its definition and a description
of the test conditions.

Table 4. CPU Times for the Calculation of All Real Roots of
a Cubic Polynomial Having Three Real Roots (3r+2x), One
Real Root and Two Extrema (1r+2x), or One Real Root and
No Extrema (1r+0x): Comparison of Iteration Methodsa

tCPU/ns

method C 3r+2x 1r+2x 1r+0x

Cardano 410−680 93 93
Newton−Raphson 2 45−72 86 62
Halley 3 51−64 70 52
Olivera-Fuentes 3 70−96 109 87
Steffensen 2 79−102 111 88
Mollerup 3 65−80 490 92
modified Richmond 3 68−93 113 93
regula falsi 1.6 34−103 245−305 270

aInitialization, LNS/i; scaling, off. C, convergence order. See section 3
for a description of the test conditions.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4038664 | Ind. Eng. Chem. Res. 2014, 53, 2529−25362533

The test runs were carried out on various PCs and servers
having processors with x86-64 architecture, using a Linux
operating system and the GNU C++ compiler g++-4.7 with the
option “-Ofast”. The CPU times reported in this work are for
an Intel i5-2500K processor (3.3 GHz clock frequency). The
results for other processor types (AMD Opteron 6218 (2.0
GHz), Intel Xeon E5-2650 (2.0 GHz)) were practically the
same after compensating for their lower clock frequencies.
No runs were made for cases 1.4, 2.x, and 3.2, as these can be

solved quicker analytically. These cases can be recognized by
evaluating the value and the first derivative of the polynomial at
the inflection point, f(xinfl) and f ′(xinfl).
In order to demonstrate the effect of scaling, we created

some “unscaled” coefficient sets by setting Ai′ = Aiλ
3−i with λ =

103 or 10−3. This corresponds to a change of units for volumes
from dm3 to m3 or to cm3, respectively . The results are shown
in Table 3.
From Table 3 it is evident that scaling can significantly speed

up the computation if Cauchy bounds are used, whereas there
is no perceivable improvement in the case of Laguerre−Nair−

Samuelson bounds. If these bounds are used, it is better not to
scale the polynomial in order to avoid the computational
overhead of his operation.
Vieta initialization can be very fast, but also very slow,

depending on the values of the polynomial coefficients. As it is
possible to construct polynomials for which the Vieta
initialization will led to divergent behavior, we have excluded
it from further consideration.
Another interesting option is working with a shifted

polynomial:

Δ + Δ + =x b x b 03
1 0 (28)

with

Δ = −x x xinfl

= + −b a x a x20 0 infl 1 infl
3

= +b x a a1 infl 2 1

Figure 3. Algorithm outlining the proposed iterative root finder for cubic polynomials.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4038664 | Ind. Eng. Chem. Res. 2014, 53, 2529−25362534

As the shifted polynomial has no quadratic term anymore, the
computation of function values and criteria is simplified. It
turned out, however, that the CPU time savings could not
compensate the computational overhead of the shift operation.
Table 4 contains the CPU times obtained for different

iteration methods (scaling turned off, initialization with
Laguerre−Nair−Samuelson bounds or inflection point) and,
for comparison, for the analytical method (Cardano’s formula).
In the latter, the calculation of the roots was followed by one
step of a Newton−Raphson iteration to reduce rounding errors,
and by sorting. It turns out that the following are true:
(i) The analytical method is reasonably fast if there is only

one real root, but rather slow otherwise.
(ii) Some of the oldest iteration methodsNewton−

Raphson and Halleyperform best, with the latter being
marginally better.
(iii) The speed of the regula falsi method depends very much

on the polynomial coefficients. It can be extremely fast, but it is
usually is slower than the other iterative methods.
This assessment of iterative methods is based on CPU times.

Alternatively, one might prefer to look at the number of
iteration steps required to obtain a given precision. For the test
problems of this article, Newton’s method needs two to three
steps to achieve the desired precision if there are three real
roots, and six otherwise. Higher-order methods (Halley,
Olivera-Fuentes, modified Richmond) need two to three
steps (three roots) or four steps (one root). Steffensen’s
methods is in between (three to four or five steps, respectively).
The regula falsi method, having a convergence order of about
1.6, needs 4−10 steps (three roots) or 12−15 steps (one root).
[If x1, x2, ..., x∞ are successive approximations of an iteration
method, the convergence order C of a convergent series is
defined such that limi→∞ |xi+1 − x∞|/|xi − x∞|

C = λ is a positive
constant.]
We conclude thatfor the coefficient sets and test

conditions used herean algorithm consisting of

1. normalization
2. initialization with either Laguerre−Nair−Samuelson

bounds or the inflection point
3. iterative search for the first root with Halley’s method
4. deflation and solving the resulting quadratic equation

analytically

(cf. algorithm in Figure 3) is usually best. [For convenience, a
C/C++ subroutine is provided in the Supporting Information .]
It is always significantly faster than the analytical method. If
there are three real roots, which is typical for vapor pressure
calculations, the new method is faster by a factor of 8−10.

■ ASSOCIATED CONTENT

*S Supporting Information
Cubic root finder using Halley’s method: C/C++ program
code. C/C++ code snippet: normalization and scaling. This
material is available free of charge via the Internet at http://
pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: ulrich.deiters@uni-koeln.de.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

R.M.-S. gratefully acknowledges the Instituto Politećnico
Nacional for providing financial support for this work.

■ SYMBOLS

Symbols Referring to Equations of State
a = attraction parameter of an equation of state
b = volume parameter of an equation of state
p = pressure
R = universal gas constant
T = temperature
Tc = critical temperature
Vm = molar volume
ρ = molar density, ρ = 1/Vm

Superscripts
g = gas, vapor state
l = liquid

Symbols Referring to Polynomials and Polynomial Root
Finders

Ai = coefficient of the ith power term of a general third-order
polynomial (A3 ≠ 1)
ai = coefficient of a normalized third-order polynomial (a3 =
1)
bi = coefficient of a scaled or shifted third-order polynomial
ci = coefficient of a second-order polynomial
C = convergence order
D = discriminant of a quadratic polynomial
r = radius of the root circle of a polynomial

Subscripts
infl = inflection point
lower = Laguerre−Nair−Samuelson bound
upper = Laguerre−Nair−Samuelson bound
NR = Newton−Raphson method
sc = scaled polynomial

■ REFERENCES
(1) Redlich, O.; Kwong, J. N. S. On the thermodynamics of solutions.
V. An equation of statefugacities of gaseous solutions. Chem. Rev.
1949, 44, 233.
(2) Peng, D. Y.; Robinson, D. B. A new two-constant equation of
state. Ind. Eng. Chem. Fundam. 1976, 15, 59.
(3) Salim, P. H.; Trebble, M. A. A modified Trebble−Bishnoi
equation of state: thermodynamic consistency revisited. Fluid Phase
Equilib. 1991, 65, 59.
(4) Ahlers, J.; Gmehling, J. Development of an universal group
contribution equation of state. I: Prediction of liquid densities for pure
compounds with a volume translated Peng−Robinson equation of
state. Fluid Phase Equilib. 2001, 191, 177.
(5) Schmid, B.; Gmehling, J. Revised parameters and typical results of
the VTPR group contribution equation of state. Fluid Phase Equilib.
2006, 317, 110.
(6) Avaullee, L.; Trassy, L.; Neau, E.; Jaubert, J.-N. Thermodynamic
modeling for petroleum fluids I. Equation of state and group
contribution for the estimation of thermodynamic parameters of
heavy hydrocarbons. Fluid Phase Equilib. 1997, 139, 155.
(7) Jaubert, J.-N.; Privat, R.; Mutelet, F. Predicting the phase
equilibria of synthetic petroleum fluids with the PPR78 approach.
AIChE J. 2010, 56, 3225.
(8) Qian, J.-W.; Privat, R.; Jaubert, J.-N. Predicting the phase
equilibria, critical phenomena and mixing enthalpies of binary aqueous
systems containing alkanes, cycloalkanes, aromatics, alkenes and gases
(N2, CO2, H2S, H2) with the PPR78 equation of state. Ind. Eng. Chem.
Res. 2013, 52, 16457.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4038664 | Ind. Eng. Chem. Res. 2014, 53, 2529−25362535

http://pubs.acs.org
http://pubs.acs.org
mailto:ulrich.deiters@uni-koeln.de

(9) Quiñones-Cisneros, S. E.; Deiters, U. K. An efficient algorithm
for the calculation of phase envelopes of fluid mixtures. Fluid Phase
Equilib. 2012, 329, 22.
(10) Deiters, U. K. The calculation of densities from cubic equations
of state. AIChE J. 2002, 48, 882.
(11) Olivera-Fuentes, C. The optimal solution of cubic equations of
state. Lat. Am. Appl. Res. 1993, 23, 243.
(12) Deiters, U. K. The calculation of densities from cubic equations
of state [Reply to a letter to the Editor by H. Salim]. AIChE J. 2005,
51, 3310.
(13) Mollerup, J. Thermodynamic Properties from a Cubic Equation of
State (SEP 8601); Technical report; Institute of Chemical Engineering,
Danish Technical University: Lyngby, 1986.
(14) Edmister, W. C.; Lee, B. I. Applied Hydrocarbon Thermody-
namics, 2nd ed.; Gulf Publishing Co.: Houston, TX, 1984; Vol. 1.
(15) Jordan-Engeln, G.; Reutter, F. Numerische Mathematik fu ̈r
Ingenieure; Bibliographisches Institut: Mannheim, Germany, 1985.
(16) Muller’s method. http://en.wikipedia.org/wiki/Muller’s_
method.
(17) Durand−Kerner method. http://en.wikipedia.org/wiki/Durand-
Kerner_method.
(18) Deiters, U. K.; Kraska, Th. High-Pressure Fluid Phase
EquilibriaPhenomenology and Computation; Kiran, E., Ed.; Super-
critical Fluid Science and Technology 2; Elsevier: Amsterdam, 2012.
(19) Deiters, U. K. ThermoC project home page: http://thermoc.
uni-koeln.de/index.html.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie4038664 | Ind. Eng. Chem. Res. 2014, 53, 2529−25362536

http://en.wikipedia.org/wiki/Muller’s_method
http://en.wikipedia.org/wiki/Muller’s_method
http://en.wikipedia.org/wiki/Durand-Kerner_method
http://en.wikipedia.org/wiki/Durand-Kerner_method
http://thermoc.uni-koeln.de/index.html
http://thermoc.uni-koeln.de/index.html

