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Closed-loop critical curves in simple hard-sphere van der Waals-fluid
models consistent with the packing fraction limit

Leonid V. Yelash,a) Thomas Kraska,b) and Ulrich K. Deiters
Institut für Physikalische Chemie, Universita¨t zu Köln, Luxemburger Str. 116, D-50939 Ko¨ln, Germany

~Received 6 July 1998; accepted 5 November 1998!

Two new hard-sphere equations are proposed which, in combination with a van der Waals attraction
term, lead to a biquadratic, respectively a cubic, equation of state. The new equations show the
correct limiting behavior at low as well as at high densities; their poles are close to the physical
packing fraction of hard spheres. Both equations of state were extended towards mixtures by
one-fluid mixing rules, and their global phase behavior was investigated for the special case of
equal-sized molecules. Both equations are able to predict closed-loop liquid–liquid immiscibility;
the topology of the phenomenenon is the same as for the Carnahan–Starling equation. It appears the
occurrence of closed-loop liquid–liquid immiscibility does not depend on the location of the pole
nor on the degree of the equation of state used. ©1999 American Institute of Physics.
@S0021-9606~99!51606-1#
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I. INTRODUCTION

Because closed-loop liquid–liquid immiscibility ha
been experimentally detected in strongly polar mixtu
only, it has been attributed to hydrogen bonding for ma
years. Thus the early work of Boshkov,1 who first demon-
strated that this phenomenon could be obtained with an e
tion of state for the nonpolar Lennard-Jones fluid, was m
with doubt. Meanwhile the phenomenon could be found
other equations of state for nonpolar fluids, such as the s
plified perturbed hard chain equation2 or the
Redlich–Kwong3 equation. In a recent publication4 we have
shown that the attractive hard sphere fluid, modeled by
Carnahan–Starling van der Waals equation of state5,6 ~CS-
vdW! is able to produce closed-loop liquid–liquid immisc
bility, too.

In contrast to this, the van der Waals equation~vdW! is
known to show no closed-loop liquid–liquid immiscibility
The reason for this qualitatively different behavior is still n
completely understood. It has been suggested that the l
tion of the poles of the equations of state might be resp
sible for the difference, and—since the CSvdW equation
its pole at too high densities—that therefore the closed-l
immiscibility obtained with this equation might be an ar
fact.

Another reason for the qualitative differences betwe
the vdW and the CSvdW equation might be the cubic nat
of the former as opposed to the quintic nature of the latt

In this article we investigate the qualitative and quan
tative dependence of the closed-loop phenomenon on th
cation of the pole and on the degree of the equation of st
We intend to give an answer to the question if the pole of
CS equation atypole51 with y[(p/6)s3(N/V) is the reason
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for the existence of closed loops in the CSvdW model a
how the closed-loop behavior changes, when the cor
packing fraction limit is included in the model.

II. THEORY

The CS equation is an accurate equation of state for
hard-sphere fluid, but since it had been developed in the
density limit it does not incorporate the correct high dens
limit. In Fig. 1 the dependence of the the compressibil
factor Z5pVm/RT on the packing fraction is shown for th
van der Waals repulsion~vdWR! ZvdwR51/(124y) and the
CS equationZCS5(11y1y22y3)/(12y)3. The largest
possible packing fraction should be 0.74@close packing face-
centered-cubic~fcc! lattice# or slightly less~random close
packing!. But evidently the vdW equation yields a too lo
maximal packing fraction (ypole50.25), whereas the maxi
mal packing fraction of the CS equation is too high (ypole

51).7 The value of the packing fraction at the pole is det
mined by the values of the coefficientsBm of the virial ex-
pansion ofZ

Z511 (
m51

`

Bm11ym. ~1!

In Table I the virial coefficients of the van der Waals repu
sion term~vdWR! and the CS equation are compared w
the results obtained by a Monte Carlo~MC! integration by
Ree and Hoover.8,9 The virial coefficients of the vdWR equa
tion (Bi

vdWR54i 21) increase too strongly withi, thus causing
a too lowypole value. The virial coefficients of the CS equa
tion @Bi

CS53(i 21)1( i 21)2# are in good agreement with
the Monte Carlo results up toB7 , but the higher virial coef-
ficients do not increase strongly enough in order to place
pole at the correct close packing value. Generally the pa
ing fraction at the pole of a hard sphere equation is relate
the limiting behavior of the virial coefficients by the expre
sion ~see the Appendix!

n,

il:
9 © 1999 American Institute of Physics
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lim
m→`

S Bm

Bm11
D5ypole. ~2!

Equation~2! can be understood as a guideline for the co
struction of the higher virial coefficients, which cannot
obtained by numerical integration. One can distinguish t
types of repulsion terms depending on the behavior
Bm /Bm11 as function of m: For vdWR-like equations
Bm /Bm11 is constant and always equal toypole51/4, for CS-
like equations,Bm /Bm11 is a nonlinear function ofm, and it
is necessary to compute the limit for infinitem in order to
obtainypole51.

A. Modification of the CS equation

We have introduced the nearly correct pole packing fr
tion at 3/4 by multiplying the CS equation with (
24y)/(324y) and shifting the value of the coefficient o
the y4 term in the resulting equation from 4.0 to 6.0. A
result we obtained the following equation for the hard sph
fluid:

Z5
315y16y2

~12y!~324y!
. ~3!

The pole of this equation is aty50.75, which is very close to
the value of the close packing fraction. Comparison of E
~3! with simulation results of the hard sphere fluid sho
good agreement. The virial coefficients@Bi527/2
3(4/3)i 21214# listed in Table I are close to the CS valu

FIG. 1. Compressibility factorZ as function of the packing fractiony for the
vdWR equation, the CS equation, and Eq.~3!. The pole for each equation i
indicated by a dashed line.

TABLE I. Comparison of the repulsive virial coefficients of the van d
Waals equation~vdWR!, the Carnahan–Starling equation~CS!, Monte Carlo
results of Ree and Hoover~Refs. 8, 9! ~MO!, and Eqs.~3! and ~7!.

Virial coefficient Bi

i vdW CS MC Eq.~3!
Eq. ~7!

with f pole54/3

2 4 4 4 4 4
3 16 10 10 10 10
4 64 18 18.36 18 13.33
5 256 28 28.2460.08 28.67 17.78
6 1024 40 39.5260.53 42.89 23.70
7 4096 54 56.5261.64 61.85 31.60
8 16384 70 @80.28, 95.03# 87.14 42.14
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and the MC values up to approximatelyi 55. Higher virial
coefficients of Eq.~3! increase stronger than the CS value

The equation of state employed here for the calculat
of phase equilibria consists of Eq.~3! and the van der Waals
mean field attraction term

p5
RT

Vm
F 315y16y2

~12y!~324y!G2
a

Vm
2 . ~4!

In this equation of state the packing fraction is related to
covolume parameterb by y5b/4Vm. If we define reduced
variables

T̃5
8Rb

a
T, p̃5

8b2

a
p, ~5!

the critical properties can be expressed asyc50.130 082 08,
T̃c53.0163 361 4, p̃c50.563 927 977 5, Zc50.359 307 63.
These values can be used for the calculation of the equa
of state parametersa andb from the critical temperatureTc

and critical volumeVm,c of a substance. The values of th
reduced critical values of Eq.~4! are very close to those o
the CSvdW equation of state (yc50.130 443 884, T̃c

53.018 518 50, p̃c50.565 352 121 1, Zc50.358 956 21).
This is not surprising, since the differences between the
vdW equation and Eq.~4! are important at packing fraction
much higher than the critical packing fraction only.

Rearranging Eq.~4! leads to a fourth order polynomial in
the molar volume,

24pVm
4 2~14bp124RT!Vm

3 1~2b2p210bRT124a!

3Vm
2 2~3b2RT114ba!Vm12ab250, ~6!

which is one order higher than the cubic van der Waals eq
tion and one order lower than the fifth order Carnaha
Starling–van der Waals equation. It is therefore possible
calculate the molar volume from the pressure with Eq.~4!
analytically.10

B. Modification of the vdWR equation

The derivation of Eq.~3! is based on the CS equation.
is also possible to start from the vdWR equation and ext
it with respect to the correct close packing fraction. We ha
derived an equation which is designed to fulfill the followin
requirements:

~a! the second virial coefficient is alwaysB254;
~b! the pole is atypole51/f pole;
~c! for f pole54 (ypole50.25) the equation degenerates

the vdWR equation;
~d! for f pole54/3 (ypole50.75) the third virial coefficient is

exact atB3510.

The parameterf pole can be used to move the pole of th
vdWR equation towards the physical limit of close packi
and to decrease the value of the third virial coefficient.

Z5

11~42 f pole!y17S 12
f pole

4 D y2

12 f poley
. ~7!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The virial coefficients of this equation areBi5(7
19/4f pole) f pole

i 23 for i>3. They are listed in Table I forf pole

54/3. This family of equations is of vdWR type in two re
spects:

~a! if combined with the vdW attraction it yields a cub
equation of state in the molar volume;

~b! it has constant values forBm /Bm11 .

Inserting f pole54/3 into Eq. ~7! and combining it with the
van der Waals attraction yields the equation of state

p5
RT

Vm
S 318y114y2

324y D2
a

Vm
2 . ~8!

Equation~8! can be rearranged to its cubic form

23pVm
3 1~3RT1pb!Vm

2 1~2RTb23a!Vm1ab

1 7
8RTb250. ~9!

The critical properties of Eq.~8! are yc50.138 692 40,T̃c

53.091 635 97,p̃c50.609 271 360 9, andZc50.355 230 10.
As Eq. ~6!, Eq. ~9! can be solved analytically.

C. Extension to mixtures

For the investigation of the binary phase behavior E
~4! and ~8! have been extended by usual quadratic mix
rules. Since we focus here on equal sized spheres only
haveb5b115b225b12 and

a5(
i 51

2

(
j 51

2

xixjai j . ~10!

The method of the investigation of the phase behavior
binary mixtures employed here has been introduced by
Konynenburg and Scott.11,12 It has been further develope
recently in many articles.13–16 The axes of a global phas
diagram are reduced differences of the equation of state
rameters

l5
d2222d121d11

d221d11
, ~11!

z5
d222d11

d221d11
. ~12!

Here di j 5Ti j* bi j /bii bj j is the interaction density andTi j*
5ai j /Rbi j the characteristic temperature. For equal siz
spheres thedi j can be replaced byai j in the definitions of the
global parametersl and z. The regions of the global phas
diagram represent different types of binary phase behav

FIG. 2. Boundary states in binary phase diagrams. The dashed lines a
vapor pressure curves of the pure substances:~a! degenerated critical pres
sure maximum~dCPM!; ~b! critical pressure step point~CPSP!; ~c! double
critical end point~DCEP!; and ~d! tricritical point ~TCP!.
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These regions are separated by boundary lines which
higher order thermodynamic states and can be calculate
numerically solving the corresponding analytically availab
thermodynamic conditions. For a detailed discussion of
boundary states related to the closed-loop behavior see
4. In Fig. 2 the boundary states related to the appearanc
the closed-loop liquid–liquid immiscibility are shown in th
correspondingp–T projection of the binary phase diagram

III. RESULTS

A. Hard-sphere fluid

Figure 3 shows a comparison of the compressibility fa
tor of Eq. ~3! with ZCS and results obtained by Monte Car
simulation by Barker and Henderson.17 The comparison of
the pair correlation function at contact corresponding to E
~3!

g~s!5
31y/2

~12y!~324y!
~13!

and Eq.~7!

g~s!5
11~ 7

42 7
16 f pole!y

12 f poley
, ~14!

and from Monte Carlo simulation data is shown in Fig.
Both comparisons show that Eq.~3! is in very good agree-
ment with the simulation data up toy.0.4. For highery Eq.
~3! gives slightly larger values than the simulation and t

the

FIG. 3. Comparison of the compressibility factor obtained with the vdW
equation, the CS equation, Eq.~3!, Eq. ~7!, and Monte Carlo results of
Barker and Henderson~Ref. 17!.

FIG. 4. Comparison of the pair correlation function at contact obtained w
Eq. ~3!, Eq.~7!, and Monte Carlo results of Barker and Henderson~Ref. 17!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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CS term. But since Eq.~3! includes the high density limi
very close to the close packing value the values of Eq.~3!
and the simulation data are expected to approach each
at higher packing fraction. This of course neglects the gla
state found aty.0.6,18 as all fluid equations of state negle
solid phases.

Equation~7! shows larger deviations from the MC da
than Eq.~3!, but it is still a reasonable model for the ha
sphere fluid. For any value off pole it is certainly a better
approximation than the vdWR equation. The inferior agr
ment of its virial coefficients with the exact values is due
the simplification of the equation structure to a cubic eq
tion of state@Eq. ~7!#.

B. Phase equilibria of pure fluids

Figure 5 shows a temperature density plot of the co
istence curve for the CSvdW equation in comparison w
the biquadratic Eq.~4!, the cubic Eq.~8!, and the vdW equa-
tion. Obviously the differences in the saturated liquid den
ties between Eqs.~4!, ~8!, and CSvdW are small. Equatio
~4! shows a slight decrease of the liquid density as compa
to the CSvdW model. The saturated liquid densities cal
lated with Eq.~8! at T/Tc.0.3 are slightly larger than CS
vdW liquid densities. Both new equations show a very go
agreement of the saturated vapor densities with those o
CSvdW equation.

C. Phase equilibria of mixtures

In order to investigate the influence of the different r
pulsions terms on the binary phase behavior we have ca
lated the global phase diagrams for the biquadratic and
cubic equations and compared it with the global phase
gram obtained with the CSvdW equation.4 Sections of the
global phase diagrams showing all important regions of
nary phase diagrams, are plotted in Fig. 6. Thep–T dia-
grams corresponding to the boundary curves plotted in Fi
are shown in Fig.~2!. The closed-loop region obtained wit
the CSvdW equation4 @Fig. 6 ~top!# is surrounded by the two
branches of the critical pressure step point line@CPSP, Fig.
2~b!#, one branch of the double critical end point lin
@DCEP, Fig. 2~c!#, and the degenerated critical pressu
maximum line@dCPM, Fig. 2~a!#. At the CPSP line the bi-
nary phase diagram type V forms two additional extrem

FIG. 5. Comparison of the coexistence curve of a pure substance obt
with the CS equation, Eq.~4!, and Eq.~8! with f pole54/3.
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and changes to typeVm. At the dCPM the liquid–liquid
critical line changes its slope and direction atT50 K and
therefore produces an extreme in the liquid–liquid critic
line. The triangle-like closed-loop region is divided in
three parts by two more boundary lines. At the DCEP li
@Figure 2~c!# a binary critical line touches the three-pha
line and typeVm changes to type VII. At the tricritical line
@TCP, Fig. 2~d!# the three-phase line interrupting the liqu
gas critical line shrinks to a point, and type VII changes
type VI.

Most parts of the global phase diagrams are very sim
for all three equations. The region which is most sensitive
the changes in the the repulsive virial coefficients is
closed-loop region. Figure 6 show the closed-loop regio
for the biquadratic and the cubic equation of state. T
closed-loop behavior obtained with the biquadratic equat
is topologically identical to the behavior obtained with th
CSvdW equation.4 These two equations differ only in th
absolute position and size of the closed-loop region. Th
both produce the binary phase diagram typesVm, VII, and
VI as described above. The closed loop region obtained w
the cubic equation differs in one point topologically from th
one obtained with the CSvdW equation: The short branch

ed

FIG. 6. Global phase diagram calculated with different equations of st
Top: CS equation; middle: Eq.~4!; bottom with magnification of the closed
loop region: Eq.~8!. ~—! DCEP,~—! TCP,~–––! CPSP,~-–-! dCPM,~--–!
azeotrope boundary lines,~--–! geometric mean line (a125Aa11a22), ~1!
van Laar point.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



th
ll
om
yp
he

a

e
rd
.
t

th
n

or
he

a

ex
d
w
he
th
he
m
th

at
on
io
on
al

o

ti

the
to

avior
n
r

a

-
5
th
an-
rect
tate
fi-
op

gs-
s-
-

s
se-

r

e

ries

3083J. Chem. Phys., Vol. 110, No. 6, 8 February 1999 Yelash, Kraska, and Deiters
the DCEP line, starting at the DCEP cusp, ends near
dCPM line for numerical reasons. Since this numerica
caused end point is very close to the dCPM line and far fr
the TCP line, the existence of the binary phase diagram t
VI is unlikely. Hence the cubic equation produces t
closed-loop typesVm and VII but not VI. Type VII has an
isolated closed-loop island as type VI. Figure 7 shows
phase diagram of type VII calculated with the cubic equ
tion.

IV. CONCLUSIONS

In this article two equations of state have been dev
oped which reproduce the physical properties of the ha
sphere fluid well and have simple mathematical structures
contrast to the CS equation they both have a pole close to
physically correct close-packing fraction and reproduce
virial coefficients much better than the vdWR equatio
Similar equations can be found in the literature19–23of which
some are slightly better, but always at the cost of a m
complicated equation structure. The equations proposed
yield biquadratic and cubic equations inVm when combined
with a vdW-kind attraction. ThereforeVm5Vm(p,T) can be
solved analytically, which makes them attractive for applic
tions.

The calculation of the pure substance liquid–gas co
istence curves shows very good agreement with the CSv
equation. The analysis of the binary mixture behavior sho
that the unphysically high packing fraction at the pole of t
CS term is not the reason for the closed-loop behavior of
CSvdW equation of state: An equation of state with t
nearly correct packing fraction limit produces the sa
closed-loop behavior as the CSvdW equation. Parts of
closed-loop critical lines may correspond to metastable st
in real mixtures, e.g., they are below the crystallizati
planes, but they are not at unphysically high packing fract
beyond the fcc close packing fraction. This investigati
confirms the existence of closed-loop liquid–liquid critic
lines in the attractive hard-sphere fluid mixtures.

We have shown that the existence of the closed-lo
behavior does not depend on the order of the equation
state. It is possible to obtain closed loops with the quin
CSvdW equation as well as with the the quartic Eq.~4! or the

FIG. 7. A binary phase diagram type VII calculated with Eq.~8! (z
50.4065,l520.0008: ~a! pT-projection;~b! one xTr-section atpr50.5;
Tr5T/Tc,1 ; pr5p/pc,1 .
Downloaded 23 Jan 2003 to 134.95.49.170. Redistribution subject to A
e
y

e

a
-

l-
-

In
he
e
.

e
re

-

-
W
s

e

e
e

es

n

p
of
c

cubic Eq.~8!. It appears that the important properties are
values of the repulsive virial coefficients. If they are close
the hard-sphere values, one can expect closed-loop beh
after combination with the vdW attraction term. As show
above, the value ofypole is related to the values of the highe
virial coefficients by Eq.~2!. However theypole value also
affects the values of the lower virial coefficients. For
simple vdWR-type equationZ51/(12 f y) the strong corre-
lation betweenBi and ypole @Bi5(1/ypole)

i 11# becomes ob-
vious for all virial coefficients. It follows that with decreas
ing ypole towards the unphysically low vdWR value of 0.2
the virial coefficients get unphysically large. Along this pa
towards the vdWR equation the closed-loop behavior v
ishes. Hence the pole of this simple equation has an indi
influence on the existence of closed loops, equations of s
with the physically correct pole and repulsive virial coef
cients of the hard-sphere fluid clearly do exhibit closed-lo
behavior.
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APPENDIX

Derivation of Eq.~2!: Before considering the relation
between virial coefficients we note that the geometrical
ries

S05(
i 50

`

qi5
1

12q
, ~A1!

converges foruqu,1. By differentiating this equation highe
order expressions can be obtained

Sn5
]nS0

]qn 5(
i 50

`
~ i 1n!!

i !
qi5

n!

~12q!n11 . ~A2!

The factor (i 1n)!/ i ! is a polynomial ini of the ordern. By
forming appropriate linear combinations of theSn it is al-
ways possible to isolate thei n term

(
i 50

`

iqi5S12S0 , ~A3!

(
i 50

`

i 2qi5S223S11S0 , ~A4!

]

generally

(
i 50

`

i nqi5 (
k50

n

pnkSk . ~A5!

Hence it is possible to express any infinite series( i nqi by a
finite series ofSn , and convergence is certain foruqu,1. The
virial series Eq.~1! must converge for all densities below th
pole y,ypole and diverge aty5ypole. We assume that the
virial coefficients can be expressed as finite or infinite se
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Bm115(
i 50

bimmi . ~A6!

Inserting this into Eq.~1! leads to

Z5 (
m50

`

(
i 50

bimmiym5(
i 50

(
m50

`

~bimym!mi . ~A7!

The expression in parentheses is identified withqm, i.e., we
assume

q5~21!12sgn~bim!bim
1/my, ~A8!

where sgn represents the sign function. Then we can rew
~A7! as

Z5(
i 50

(
k50

i

pik

i !

~12q! i 11 . ~A9!

In order to ensure convergence at all densities 0<y
,ypole,i , uqu,1 must hold. At the pole we haveuqu51 for
all m above some finite threshold. Hence

ubimu5
1

ypole,i
m ~A10!

and

Bm115(
i 50

mi

ypole,i
m . ~A11!

Equation ~A6! diverges if at least one of the inner sum
diverges. Leti 8 denote the index whose series diverges fi
Then the virial expansion converges for 0<y,ypole with

ypole5ypole,i 8<ypole,iÞ i 8 . ~A12!

For large values ofm the contribution ofi 8 to Eq. ~A12!
therefore dominates

lim
m→`

Bm115
mi 8

ypole
m ~A13!
Downloaded 23 Jan 2003 to 134.95.49.170. Redistribution subject to A
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and finally

lim
m→`

Bm

Bm11
5ypole. ~A14!
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