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Abstract

The double retrograde vaporization in binary fluid mixtures under high pressure is studied

by means of the Gibbs–Konowalow equations. It is shown that the phenomenon is related to

the behavior of two functions, the slope of tie lines in a volume–mole fraction diagram and the

composition derivative of the vapor volume, which in turn depends on the partial molar vol-

ume of the solute. Due to mathematical constraints these curves can intersect more than once,

thus creating double retrograde behavior.
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1. Introduction

Recently Raeissi and Peters [1] called attention to a peculiar phenomenon

occurring in high-pressure (vapor + liquid) phase equilibria – the so-called double

retrograde vaporization: Upon compressing, a gas containing trace amounts of a

low-volatile compound undergoes more than one condensation/vaporization tran-

sition until the liquid or compressed fluid state is reached. Up to four dew points
have been reported for one composition. The phenomenon is caused by a sigmoid

shape of the dew point curve in the vicinity of the critical point of the more

volatile component.
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Experimental evidence of this phenomenon has been obtained by Peters and

Raeissi as well as several other authors; for an overview of the experimental work on

this subject see [1]. In this publication [1] the authors model the phenomenon for two

experimental systems (ethane + limonene) and (ethane + linalool) by means of a simple

cubic equation of state with standard mixing rules and they conjecture that double
retrograde vaporization should be a rather common phenomenon in fluid mixtures.

In this short contribution the phenomenon is investigated by means of classical

thermodynamics, without any reference to a specific model.

2. Theory

A convenient starting point for this investigation is the Gibbs–Konowalow equa-
tions, which can be regarded as generalizations of the Clapeyron equation for mix-

tures. The Gibbs–Konowalow equation for an isothermal phase equilibrium curve of

a two-component mixture is
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Here xi denotes the mole fraction, Vi the partial molar volume, and li the chemical

potential of component i. The assignments of the phases and components are ar-
bitrary, but here it is assumed that the subscript ‘‘1’’ indicates the volatile compound,

‘‘2’’ the low-volatile solute, a single prime the liquid and a double prime the vapor

phase. The pressure derivative is taken at constant temperature along the phase

envelope, here the dew point curve. Equation (1) is a differential equation for the dew

point curve and can be used for the numerical calculation of phase diagrams. Here it

will be used to determine some geometric properties of the dew point curve.

The double retrograde vaporization phenomenon requires a ‘‘wriggling’’ of the dew

point curve. Hence, it is necessary to look for mole fraction extrema of this curve, i.e.,
points at which the condition ðox001=opÞ ¼ 0 holds or at which equation (1) diverges.

The derivative of the chemical potential in this equation can be simplified as

follows:
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Here we have used the common shorthand notation for thermodynamic derivatives:

Gipkx ¼
oiþkGm
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� �
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: ð3Þ

By taking the inverse of equation (1), the condition for mole fraction extrema can be

formulated as
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With the help of the Euler relation

Vm ¼ x1V1 þ x2V2; ð5Þ
equation (4) can be rearranged into
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This form of the Gibbs–Konowalow equations has been proposed by Rowlinson and

Swinton [2]. G2x is always finite and positive for single-phase state; it vanishes only at
(binary) critical points. Hence it cannot be responsible for a zero of equation (4). The

difference of the mole fractions is positive, too, unless there is azeotropy. The cri-

terion for extrema along the dew point curve can therefore be reformulated as

V 00
x ¼ DVm

Dx1

; ð7Þ

with DVm ¼ V 00
m � V 0

m and Dx1 ¼ x001 � x01. The right hand side of this equation de-

scribes the slope of tie lines in a (Vm; x1) diagram and will be referred to as the volume

slope function. The left hand side of this equation is the derivative of the vapor
volume with respect to the mole fraction, and will be referred to as the volume de-

rivative function.

As the double retrograde vaporization takes place in mixtures containing trace

amounts of component 2 only, it is permissible to approximate V 00
1 by V 00

m, the molar

volume of the gas phase:

V 00
x � V 00

m � V 00
2 : ð8Þ

The difficult property is the partial molar volume of the solute. It can be obtained

from

V2 ¼ � oV
op

� �
T ;n2

op
on2

� �
T ;V

: ð9Þ

The first derivative on the right hand side of this equation is related to the com-

pressibility and must always be negative; in the vicinity of a critical point this factor
! �1. The divergence of V 00

2 at the critical point of component 1 is therefore

governed by the pressure derivative. If the addition of the low-volatile component

lowers the pressure, ðop=on2Þ < 0, it is called an attractive solute. This behavior is

usually attributed to the formation of dense solvation shells of component 1 around

the molecules of the solute 2. The partial molar volume of the solute, V 00
2 , will diverge

towards �1. If the addition of the low-volatile component raises the pressure,

ðop=on2Þ > 0, it is called a repulsive solute. The partial molar volume of the solute,

V 00
2 , will diverge towards þ1.

2.1. The subcritical case

For temperatures below the critical temperature of the volatile component,
T < Tc;1, the dew point curve and the bubble point curve meet at the vapor pressure
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points of the pure fluids. Here Dx1 vanishes, whereas DVm remains positive. Therefore

the volume slope function diverges (see figure 1).

The relation of the parts of equation (7) is shown in figure 1. Usually, the volume

derivative function is below the volume slope function and no intersections and

therefore no extrema along the dew point curve occur. But if a solute is strongly at-
tractive, the two curves can intersect in two points, thus generating a mole fraction

maximum and a minimum. Therefore three dew points become possible at a given

concentration.

The volume derivative function in figure 1 was calculated for a fixed composition.

One might argue that it should rather be calculated along the dew point curve. In this

case the volume derivative function would terminate at the vapor pressure of pure

component 1 (at the pole). But this would not affect the geometric relations leading

to double retrograde behavior.
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FIGURE 1. Comparison of the left and right hand side of equation (7), subcritical case. –––, volume de-

rivative function (Vx); – – –, volume slope function (ðDVm=Dx1Þ); 
 
 
, pole marking the vapor pressure of the

solute; s, mole fraction extrema. The curves were calculated for (ethane + limonene) at T ¼ 305:2 K from

the Peng–Robinson equation of state, using the parameters of Raeissi and Peters [1] and the thermoC pro-

gram package [3].
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2.2. The supercritical case

The dew point curve and the bubble point curve meet at a binary critical point

when Dx1 ! 0 and DVm ! 0. The ratio of these two can be determined from a series

expansion of the molar Helmholtz energy at this point:

Am ¼ Ac
0 þ Ac

V dV þ Ac
xdxþ

1

2
Ac

2V ðdV Þ
2 þ Ac

VxðdV ÞðdxÞ þ
1

2
Ac

2xðdxÞ
2 þ 
 
 
 : ð10Þ

Here the Ac
ik denote derivatives of Am taken at the binary critical point. Following a

procedure described by Levelt Sengers [4], equation (10) is differentiated to obtain

expressions for the pressure and the chemical potentials and these are inserted into

the conditions for phase equilibrium

p0 ¼ p00 and

l0
i ¼ l00

i ; i ¼ 1; 2: ð11Þ
By some lengthy algebra it can be shown that the phase envelopes are symmetrical in

the vicinity of the critical point and

dV 0 ¼ �dV 00 and dx0 ¼ �dx00: ð12Þ
Substituting equation (12) this into the pressure condition yields:

Ac
V þ Ac

Vxdxþ Ac
2V dV þ 
 
 
 ¼ Ac

V � Ac
Vxdx� Ac

2V dV þ 
 
 
 : ð13Þ
All even powers of dx and dV cancel in equation (13). With DVm ¼ dV 00 � dV 0 ¼ 2dV 00

and an analogous expression for Dx1, equation (13) leads to

Ac
VxDx1 þ Ac

2V dVm þ O ðDx1Þ3
; ðDVmÞ3

� �
¼ 0; ð14Þ

and finally to

lim
Dx1!0

DVm

Dx1

¼ � Ac
Vx

Ac
2V

¼ Vx: ð15Þ

From equation (15) two conclusions can be drawn: (1), The volume slope curve does

not diverge, as in the subcritical case, but ends on the partial molar volume curve (see

figure 2), and (2), because of the missing quadratic terms in equation (14), the vol-
ume slope curve ends with zero slope.

This explains the appearance of retrograde behavior: If the critical pressure of the

mixture is above the critical pressure of the pure volatile component, the locus of the

mixture critical point in figure 2 is on the declining (high-pressure) side of the peak of

the partial molar volume curve. To reach its destination, the volume slope curve

must cross the partial molar volume curve at least once and this gives rise to a mole

fraction extremum on the dew point curve, and to (normal) retrograde behavior.

Close to the pure fluid critical point the volume slope curve is rather steep, but then
has to make a sharp bend in order to fulfill the zero slope condition at the

binary critical point. If this bend collides with the partial molar volume curve, this

creates two additional extrema along the dew point curve and the double retrograde

behavior.

U.K. Deiters / J. Chem. Thermodynamics 35 (2003) 583–589 587



3. Conclusions

Multiple retrograde vaporization can be explained by the intersection of two

curves whose general shape is more or less fixed: the volume slope curve, which rep-

resents the volume and composition differences between the coexisting phases as a

function of pressure, and the partial molar volume curve, which represents the dif-
ference of the molar volume of the vapor phase and the partial molar volume of

the solute. Normally these curves do not intersect (subcritical case) or have only

one intersection (supercritical case).

The bend of the volume slope curve that is responsible for additional intersections

in the supercritical state can only appear in the vicinity of the pure fluid critical point.

Likewise, the diverging volume slope curve in the subcritical case can only intersect

with the partial molar volume curve, if the latter is already rather large, i.e., close to

the critical point. In both cases the behavior of the curves is governed by their limiting
behavior and not by special features of the underlying model or equation of state.
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FIGURE 2. Comparison of the left and right hand side of equation (7), supercritical case. –––, volume

derivative function (Vx); – – –, volume slope function (ðDVm=Dx1Þ); 
 
 
, pole marking the vapor pressure

of the solute; s, mole fraction extrema; d, binary critical point. The insert shows an enlargement of its

vicinity. The curves were calculated for (ethane + limonene) at T ¼ 307 K, except for the lower dashed

curve, which corresponds to T ¼ 320 K and illustrates the behavior of volume slope curves at higher

temperatures.
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Therefore, any reasonably accurate equation of state should be able to model

double retrograde behavior. Furthermore, it seems rather unlikely that more than

one additional pair of extrema along the dew point curve will ever be observed.

In the argumentations above mostly attractive solutes have been considered.

Strongly repulsive solutes will make the partial molar volume curve run towards a
negative peak, but they will also cause azeotropic behavior, so that the sign of the

volume slope curve is changed, too, and the geometric relations between the curves

are analogous to the normal case.

Although the Gibbs–Konowalow equations are powerful tools for the construc-

tion of phase diagrams, most modern textbooks in physical chemistry or chemical

engineering do not mention them any more. The author is very grateful to G. M.

Schneider (University of Bochum, Germany) for calling his attention to these (and

many other) treasures of thermodynamics. He furthermore thanks C. J. Peters
(TU Delft, The Netherlands) for making available preprints on the topic of double

retrograde vaporization.
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