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A thermodynamic argument has been developed which relates the chirality of the constituents of a mixture of
enantiomers to the system excess volume, and thereby to its Gibbs free enthalpy. A speciÐc connection is
shown between the excess volume and the statistical mechanical partition function. The KiharaÈSteiner
equations, which describe the geometry of convex hard bodies, have been extended to include also chiral hard
bodies. These results have been incorporated into an extension of the equation ofPavl•� c— ekÈNezbedaÈBoubl•� k
state for convex, aspherical, hard-body systems. The Gibbs free enthalpy has been calculated, both for
single-component and racemic mixtures, for a wide variety of hard-body systems of diverse volumes and
degrees of asphericity, prolateness, and chirality. The results show that a system of chiral enantiomers can
evolve to an unbalanced, scalemic mixture, which must manifest optical activity, in many circumstances of
density, particle volume, asphericity, and degree of chirality. The real chiral molecules
Ñuorochloroiodomethane, CHFClI, and 4-vinylcyclohexene, have been investigated by Monte CarloC8H12 ,
simulation, and observed to both manifest positive excess volumes (in their racemic mixtures) which increase
with pressure, and thereby the racemicÈscalemic transition to unbalanced distributions of enantiomers. The
racemicÈscalemic transition, responsible for the evolution of an optically active Ñuid, is shown to be one
particular case of the general, complex phase behavior characteristic of ““closely-similar ÏÏ molecules (either
chiral or achiral) at high pressures.

1 Introduction
The phenomenon of optical activity in Ñuids, either biotic or
abiotic, requires, simultaneously, two distinct phenomena : the
presence of chiral molecules, which lack a center of inversion ;
and an unequal distribution of those chiral enantiomers. A
system of chiral molecules characterized by a distribution of
equal abundances of enantiomers is a racemic mixture ; ones
characterized by distributions of unequal abundances are sca-
lemic mixtures. Only scalemic mixtures manifest optical activ-
ity. Certain biological processes, such as natural fermentation,
generate chiral molecules of only one enantiomer. Abiological
processes can produce either equal or unequal enantiomer
abundances, depending upon the thermodynamic conditions
of their evolution.

The phenomenon of optical activity in abiotic Ñuids is
shown in the following sections to be a direct consequence of
the chiral geometry of the system particles acting according to
the laws of classical thermodynamics. In the following sections
a purely thermodynamic argument is developed which relates
the evolution of optical activity in a system of chiral molecules
to the excess volume of scalemic mixtures. The excess volume
of the scalemic mixture of enantiomers is related to their geo-
metric properties using the KiharaÈSteiner equations, which
have been extended to describe particles which lack a center of
inversion. The chiral property described by the extension of
the KiharaÈSteiner equations is introduced into the

equations for mixtures of hardPavl•� c— ekÈNezbedaÈBoubl•� k

¤ For Part III see ref. 31.

bodies, with which are calculated the Gibbs free enthalpies
and thermodynamic affinities of hard-body systems. The cal-
culated thermodynamic affinities establish that, in accordance
with the dictates of the second law, a system of chiral mol-
ecules will often evolve unbalanced (scalemic) abundances of
enantiomers at high densities.

For experimental veriÐcation of the theoretical calculations
made with convex hard-body systems, Monte Carlo simula-
tions have been carried out on the real chiral molecules Ñu-
orochloroiodomethane (CHFClI), and 4-vinylcyclohexene

Both CHFClI, and have been observed, at(C8H12). C8H12high pressures, to manifest higher densities in their scalemic
distributions, as compared to their racemic ones. Such density
change drives the racemicÈscalemic transition.

1.1 Historical background

From its Ðrst demonstration by Pasteur, the phenomenon of
optical activity in Ñuids has engaged the attention and interest
of the scientiÐc community.1 This phenomenon has provided
an arena for considerable exercise of imagination and creative
fantasy, regrettably almost entirely unleavened by the disci-
pline of thermodynamics.

Perhaps for reason of its historical provenance in fermented
wine, the phenomenon of optical activity in Ñuids was for
some time believed to have some intrinsic connection with
biological processes or materials. Such error persisted until
the phenomenon of optical activity was observed in material,
some believed previously to be uniquely of biotic origin,
extracted from the interiors of meteorites.

DOI : 10.1039/b003265o Phys. Chem. Chem. Phys., 2000, 2, 3163È3174 3163

This journal is The Owner Societies 2000(



From the interiors of carbonaceous meteorites have been
extracted the common amino-acid molecules alanine, aspartic
acid, glutamic acid, glycine, leucine, proline, serine and threo-
nine, as well as the unusual ones a-aminoisobutyric acid, iso-
valine and pseudoleucine.2h4 At one time, all had been
considered to have been solely of biotic origin. The ages of the
carbonaceous meteorites were determined to be 3È4.5 billion
years, and their origins clearly abiotic. Therefore, those amino
acids had to be recognized as compounds of both biological
and abiological genesis. Furthermore, solutions of amino-acid
molecules from carbonaceous meteorites were observed to
manifest optical activity. Thus was thoroughly discredited the
notion that the phenomenon of optical activity in Ñuids
(particularly those of carbon compounds) might have any
intrinsic connection with biotic matter. SigniÐcantly, the
optical activity observed in the amino acids extracted from
carbonaceous meteorites has not the characteristics of such of
common biotic origin, with only one enantiomer present ;
instead, it manifests the characteristics observed in natural
petroleum, with unbalanced, so-called scalemic, abundances of
chiral molecules.

The optical activity commonly observed in natural pet-
roleum was for years speciously claimed as a ““proof ÏÏ of some
connection with biological detritus, albeit one requiring both
a willing disregard of the considerable di†erences between the
optical activity observed in natural petroleum and that in
materials of truly biotic origin, such as wine, as well as desue-
tude of the dictates of the laws of thermodynamics. Obser-
vation of optical activity, typical of such in natural petroleum,
in hydrocarbon material extracted from the interiors of car-
bonaceous meteorites, discredited those claims.5,6 Nonethe-
less, the scientiÐc conundrum remained as to why the
hydrocarbons manifest optical activity, in both carbonaceous
meteorites and terrestrial crude oil.

There is common misunderstanding that the molecular pro-
perty of chirality, which is responsible for optical activity in
Ñuids, is an unusual, complicated property of large, complex,
polyatomic molecules. The small, common, single-branched
alkane molecules are usually chiral. Single-branched alkanes
comprise between 7È15% of the molecular components of
natural terrestrial petroleum and are also observed in pet-
roleum synthesized by such as the FischerÈTropsch processes.
When these chiral molecules are created in low-pressure
industrial processes, they occur always in equal enantiomer
abundances, and the resulting synthetic petroleum does not
manifest optical activity. In natural petroleum, these mol-
ecules occur in unequal enantiomer abundances, and the Ñuid
manifests optical activity. Molecular chirality results from the
highly directional property of the covalent bond, and is indif-
ferent to whether a compound results from a biological or an
abiological process.

Previous hypotheses o†ered to explain optical activity of
the compounds extracted from carbonaceous meteorites have
invoked such deus ex machina as ““panspermia ÏÏ, (the
““ seedingÏÏ of optically active biotic molecules from (literally)
the heavens7,8) or the cumulative e†ects of the chiral weak-
interaction involved in beta decay,9h16 with necessary over-
sight of the several orders of magnitude of energy di†erence
compared to that attributable to the entropy of mixing, which
would destroy any imbalance responsible for optical activity.

With no recourse to any such artiÐces, the phenomenon of
optical activity in Ñuids is here shown to be an inevitable con-
sequence of the dictates of thermodynamic stability theory
manifested by systems which contain quite ordinary, covalent-
bonded molecules, in certain conditions of density.

1.2 The organization of this paper

The topic of optical activity in multicomponent Ñuids is taken
up thoroughly, in order that its fundamental thermodynamic

property be set forth explicitly, and that its statistical mecha-
nical genesis be demonstrated. This paper is organized into
three parts :

(1) A thermodynamic argument is developed which relates
the Gibbs free enthalpy, and the phase stability of a mixed
system, to its excess volume. This argument invokes no spe-
ciÐc molecular property, and uses only a strict thermodynamic
deÐnition of a system containing chiral components which
speciÐes equality of chemical potentials and molar volumes,
and a non-vanishing excess volume. The distribution of
species in a multicomponent system is shown to be deter-
mined, at low pressures, by its entropy of mixing, and, at high
pressures, by its excess volume.

(2) A statistical mechanical argument is developed which
relates directly the Gibbs free enthalpy and excess volume to
speciÐc molecular geometric properties. The KiharaÈSteiner
equations have been extended to describe hard-body particles
which do not possess a center of inversion ; and the results
have been applied to the equa-Pavl•� c— ekÈNezbedaÈBoubl•� k
tions for convex hard-body Ñuids.

(3) Using the equations, thePavl•� c— ekÈNezbedaÈBoubl•� k
thermodynamic affinity has been calculated formally for a
diverse group of hard-body Ñuid systems characterized by dif-
ferent molecular volumes, and degrees of asphericity and
chirality. These Ñuids are shown to undergo the racemicÈ
scalemic transition exactly as required by the general ther-
modynamic argument developed in section 2.

Using Monte Carlo simulation, the two real, chiral Ñuids,
Ñuorochloroiodomethane (CHFClI), and 4-vinlycyclohexene

have been investigated as pure, chiral components(C8H12)and as racemic mixtures. The latter are shown to develop
positive excess volumes at increased densities, which increase
approximately linearly with pressure, and which therefore
induce the racemicÈscalemic transition.

2 The explicit, general prediction of the genesis of
optically active systems by classical thermodynamic
argument

First is shown that the evolution of unbalanced abundances of
enantiomers, scalemic mixtures, often results inevitably from
the general requirements of thermodynamic stability theory.
In keeping with the traditions of classical thermodynamics, no
assumptions are made about any detailed properties of the
material which composes the Ñuid mixture, other than the
most basic attributes of their chirality.

From the cross derivatives of the di†erential of the Gibbs
free enthalpy, G(p, T , Mn

j
N),

dG\ [S dT ] V dp ];
j

k
j
dn

j
(1)

the di†erential equation for the chemical potential, as a func-
tion of pressure, at constant temperature is given as :

Adk
i

dp
B
T, KnjL

\
AdV

dn
i

B
T, p, KniEjL

\ V
i
. (2)

With inclusion of the Gibbs mixing factor RT ln thex
i
,

chemical potential of the ith species is given in terms of its
partial volume as :

k
i
\ k

i
i] RT ln x

i
]
AP

pi

p
Vm, i dp

B
T
. (3)

The volumetric behavior of a multicomponent system can be
described by the intensive variable, excess volume: V E\ VmWhen the formalism developed by[ R(j)xj

V
m, j .Guggenheim17 and Scatchard18 is applied, the excess volume
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can be expressed as a series expansion :
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For the present analysis, the GuggenheimÈScatchard expan-
sion, eqn. (4), may be truncated at the Ðrst term without loss
of generality ; when such is done, the molar volume may be
written as :

Vm \ ;
j

x
j
Vm, j] ;

j
;
k:j

x
j
x
k
4(V

jk
)maxE , (5)

which approximation constitutes application of the Porter
ansatz. (The excess molar volumes in eqn. (5), 4(V

j, k)maxE ,
contain the factor four in order that it will return its
maximum value in the case of a binary equimolar mixture at
the racemic molar fractions x

i
\ x

j
.)

2.1 The thermodynamic chirality function

A thermodynamic system capable of manifesting optical activ-
ity may be considered generally as consisting of the two chiral
enantiomers, L and D, together with a third achiral com-
ponent, A. For such a three-component system, the chemical
potential of the D-component enantiomer is :

kD \ kDi] RT ln xD ]
AP

pi

p
VD dp

B
T
. (6)

When eqn. (5) is applied, together with the property that
the partial molar volume of the D-(VDA)maxE \ (VLA)maxE ,

component enantiomer becomes,

VD \ VmD] xD(1[ xL)4(VDL)maxE ] xA2 4(VDA)maxE ; (7)

and its chemical potential is thereby,

kD \ kDi] RT ln xD

]
AP

pi

p
[VmD ] xL(1[ xD)4(VDL)maxE ] 4xA2(VDA)maxE ] dp

B
T
.

(8)

Let the thermodynamic chirality functional, Q(p, T ; bex)DLdeÐned as the integral of the excess volume of the system of
chiral molecules over its pressure as :

Q
ij
(p, T ; x)\

1

RT
AP

pi

p
4(V

ij
(p, T ; x))maxE dp

B
T

. (9)

The chemical potential of the D-component enantiomer, eqn.
(6) and (8), is then written :

kD \ kDi] RT ln xD ]
AP

pi

p
Vm, D dp

B
T

] RT xL(1[ xD)QDL] RT xA2 QD, A ; (10)

an analogous expression for with the subscript L replacingkL ,
that of D in eqn. (10).

2.2 Enantiomeric separation and conversion processes

Three thermodynamic conditions characterize enantiomers :
the equality of their reference chemical potentials ; the equality
of their molar volumes ; and (usually) a non-vanishing excess
volume of their mixtures :

kLi\ kDi
Vm, L \ Vm, D
V L, DE D 0

8
(11)

The validity of the Ðrst two equations eqn. (11) is intuitively
obvious. The third, inequality, of eqn. (11) may be considered
to be, at this point, an assertion ; in the following sections, it is

proven to hold usually. The simultaneous requirements set
forth by eqn. (11) are strictly thermodynamic ones and involve
no detailed properties of the molecules themselves. In addition
to the equalities of eqn. (11), the excess volume for either enan-
tiomer with a non-chiral component, A, is identical ; such that
QDA \ QLA .

Let it be assumed that the enantiomers can convert into one
another, as D ¢ L. The condition of chemical equilibrium,

together with eqn. (10), (11), and the equalitykD \ kL , QDA \
gives :QLA ,

ln
xD
xL

[ (xD [ xL)QD, L\ 0. (12)

Eqn. (12) expresses succinctly and rigorously the essential
determining factors for the spontaneous, abiotic evolution of
optical activity in Ñuids : the competition between the entropy
of mixing, given by the Ðrst logarithmic term, and the
oppositely-directed e†ects of the inevitable packing ineffi-
ciency of mixed enantiomers, given by the thermodynamic
chirality function, Eqn. (12) deÐnes the analytic LambertQDL .
W function,19,20 which has always one real root and, as
shown in Fig. 1, sometimes three.

The molar excess volume of a simple mixture often is rela-
tively small, V EB 1È10 cm3 mol~1.21,22 Therefore, at or near
a pressure of 1 bar, for a system consisting only of the two
enantiomers, kJ. The denomi-QDL\ (1/RT )pV E B (10~3/RT )
nator RT is approximately 2.5 kJ at 300 K. Therefore, at
modest pressures and essentially all temperatures, the second
term in eqn. (12) cannot balance the Ðrst except at the value

which solution describes the racemic mixture. ThusxD \ xL ,
eqn. (12) establishes that, at low pressures, an abiotic system
will usually evolve into a racemic mixture of enantiomers.

However, the thermodynamic chirality functional, QDL ,
depends directly upon the system pressure, for QDLB V Ep.
For any non-vanishing, positive excess volume, the ther-V DLE ,
modynamic chirality function has no limit as pressure
increases. Therefore, for a system whose thermodynamic
chirality function is greater than a certain threshold value,

there will always be a (usually, high) pressure(QDL)threshold,above which the system will evolve unbalanced abundances of
enantiomers, and the resulting system will inevitably be opti-
cally active. For a system whose thermodynamic chirality
function is less than the threshold value, there(QDL)threshold,

Fig. 1 Values of the functions andln(xD/(1[ xD)) (2xD [ 1)QDLwhich satisfy eqn. (12) at di†erent values of the fractional abundance,
in a binary mixture. Note the one racemic and two scalemic solu-xD ,

tions to eqn. (12) for QDL\ 4.
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will be no transition pressure, and such a system will remain
racemic. This behavior is shown graphically in Fig. 1 where
are represented the plots of the two functions ln[xD/(1 [ xD)]
and (which correspond to a binary system com-(2xD [ 1)QDLposed solely of two enantiomers). As seen clearly in Fig. 1, for
values of the thermodynamic chirality function, less thanQDL ,
a threshold value, the system cannot evolve an unbalanced
system. For the value, there is only one solution,QDL\ 1.5,
the racemic root, for the value, there is axD \ 0.5 ; QDL \ 4,
second solution at the scalemic value, (and a third,xD B 0.97
symmetrically, at xD B 0.03).

For a general system composed of two enantiomers and a
third component, A, the threshold value of for the onsetQDLof a racemicÈscalemic transition is that for which the two
terms in eqn. (12) have equal derivatives with respect to xD ;
such that,

2

(1[ xA)
\ QLD . (13)

The foregoing thermodynamic argument has shown that
chiral molecules in an unbalanced, scalemic, distribution of
enantiomers can possess lower chemical potentials, and
thereby a lower Gibbs free enthalpy, than a racemic distribu-
tion of the same compound, under certain conditions of
density.

If is positive and of sufficient magnitude, there is aQDLthreshold pressure at which the racemic mixture becomes
thermodynamically unstable. If a conversion reaction D¢ L
exists, the slightest excess of one enantiomer can cause the
system to develop a macroscopic excess of this enantiomer,
when the pressure is raised further.

2.3 The enantiomeric phase separation in scalemic mixtures

Alternatively, the system can undergo a phase split into two
scalemic phases. In either case, application of sufficient pres-
sure always leads to the formation of phases with enantio-
meric excess.

The molar Gibbs free enthalpy of the system of chiral enan-
tiomers L and D together with an achiral component A is :

Gm \ ;
j

x
j
k
j
i] RT ;

j
x
j
ln x

j

] ;
j

x
j

P
pl

p
V
m, j dP] RT xLxD QLD ] RT xA(1[ xA)QAD

(14)

The limits of stability and critical points of mixtures are deter-
mined by the higher derivatives of the molar Gibbs free enth-
alpy, which gives for the D enantiomer,G

n, i\ (dnGm/dx
i
n)
j, p, T ,

GD \
AdGm

dxD

B
xL, T, p

\ kDi] RT (ln xD [ ln xA)

]
P
pi

p
(VmD [ VmA) dp ] RT xL QLD] RT (2xA [ 1)QAD

(15)

The second derivatives of are, respectively :Gm

G2D \
Ad2Gm

dxD2
B
xL, T, p

\ RT
A 1

xD
]

1

xA

B
[ 2RT QAD

GLD \
A d2Gm

dxA dxD

B
xL, T, p

\ RT
1

xA
] RT QLD] 2RT QADh

G2L\
Ad2Gm

dxL2
B
xL, T, p

\ RT
A 1

xL
]

1

xA

B
[ 2RT QAD

(16)

The conditions for phase stability require that :

G2D G2L [ (GDL)2P 0 (17)

The examination for phase separation, for which the equality
holds in eqn. (17), introduces the equality

xD \ xL \ 12(1 [ xA). (18)

The roots of the equality in eqn. (17) then admitted are :

QDL\

7 2

(1 [ xA)

4QAD [
2

xA(1 [ xA)

. (19)

The Ðrst root of eqn. (19), for the general case of a three com-
ponent system, corresponds to that determined by eqn. (12)
for a binary system. The molar Gibbs free enthalpy of a
system containing two enantiomers and a third achiral com-
ponent, as given by eqn. (14), has been calculated using the
value for determined by the roots given by eqn. (19), andQDLis shown in Fig. 2 as a function of the reduced molar fraction,

which is the D fraction of the total molar fraction of the(xD)renantiomers, (The reduced molar fraction has been(1 [ xA).
used in order that the racemic solution will fall at the value
0.5.) The double minima of the Gibbs free enthalpy as a func-
tion of is immediately apparent in Fig. 2, as is the fact(xD)rthat the racemic mixture, for those values of is at aQDL ,
maximum. That the two scalemic minima lie at equal values of
Gibbs free enthalpy is shown by their double tangent.

The foregoing analysis has involved determination of the
equilibrium states of a multicomponent system, which con-
tains a variable distribution of enantiomers together with a
third achiral component, without considering the dynamic
processes by which that system resolves to equilibrium when
the pressure has changed. The two minima shown in Fig. 2
can be reached either by chemical reaction or by phase
separation.

If the transition time for L ] D conversion of the individual
molecules is much slower than the transport di†usion time,
then an initially racemic system will undergo a rapid physical
separation, similar to gasÈgas demixing ; and the system will
resolve into two physically separate regions, one enriched in

Fig. 2 Gibbs free enthalpy at the roots of eqn. (19), (in arbitrary
units).
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the D enantiomer, the other in the L. At the opposite extreme,
if the transition time for L ] D conversion is much faster than
the di†usion time, the system will undergo a quasichemical
type of reaction and change its constituent composition
entirely. For cases in between, the system must be expected to
undergo often complex chemical and dynamical behavior as it
proceeds to equilibrium.

3 Statistical mechanical calculation of the excess
volume using the geometric properties of individual
molecules
The thermodynamic analysis of the previous section estab-
lished that a system of chiral particles will possess, in certain
conditions of pressure, temperature, and degree of chirality, a
lower free energy in a scalemic distribution than a racemic
one. Consistent with the traditional perspective of classical
thermodynamics, that analysis invoked no detailed properties
of the chiral system, beyond the minimum functional deÐni-
tion of chiral enantiomers set out in eqn. (11). The thermody-
namic analysis identiÐed the systemÏs excess volume, acting
through the deÐned thermodynamic chirality parameter, as
the operative physical property responsible for the racemicÈ
scalemic transition. However, the classical thermodynamic
analysis did not address the question of how, or why, a system
of chiral molecules ought, or must, manifest a non-vanishing
excess volume. Nor did the thermodynamic analysis give any
speciÐc indication how the distribution of the chiral enantio-
mers might be determined from properties of those molecules.

In this section, the formalism is developed for direct calcu-
lation of the distribution of the chiral particles from the
stereochemical properties of the individual molecules. First, a
precise description of the geometry of chiral, convex, hard-
body particles is developed by extension of the KiharaÈSteiner
equations. That geometric description is then used in the

equations for convex, hard-bodyPavl•� c— ekÈNezbedaÈBoubl•� k
systems, from which an explicit expression is developed for the
Helmholtz free energy of a multicomponent system which
contains chiral particles.

3.1 The geometric description of a hard-body system:
extension of the Kihara–Steiner equations

Convex hard-body systems have been described by Kihara
and Steiner in terms of three geometric parameters, andR3

i
, S3

iwhich are determined by the support function thatV3
i
,

describes the volume and surface generated by the rolling of
one hard body around the surface of another, in all possible
orientations. As shown in the following subsection, the
weighted products of these geometric entities, andR3

i
, S3

i
V3
i
,

enter the equation of state for systems of convex hard bodies
and determine its thermodynamic properties. The parameter
functional represents the averaged radius of curvature ofR3

ithe support function and its averaged surface area ; in thisS3
iinstance, does not represent the ith partial volume but theV3

ie†ective volume determined by the support function. The indi-
vidual functionals and are deÐned by the equations :R3

i
, S3

i
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i
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p P
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1

3

P
0

p P
0

2p
r
i
Æ
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i
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]
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i
d/

B
dh d/

In eqn. (20), u(h, /) is the unit vector in the direction of the
normal of the supporting plane, and r(h, /) is the vector from
the origin to the contact point of the convex body with the

Fig. 3 The geometric parameters used by Kihara to determine R, S,
and V in eqn. (20).

supporting plane, as indicated in Fig. 3 ; the angles h and /
are polar angles.

In his derivation of the functionals and KiharaR3
i
, S3

i
V3
i
,

assumed that the convex hard body possesses a center of
inversion, and used such property to simplify his equations.
However, a convex hard body need not be invariant under
inversion. In order to represent a system whose components
possess chirality, an appropriate tensorial description must be
used. The expressions in the integrands of eqn. (20) are tensor
entities, speciÐcally pseudo-scalars ; strictly each should be
expressed similarly as :
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Clearly, in cases for which the hard body possesses a center of
inversion, the terms in the second set of square brackets in
eqn. (21) cancel, and the terms in the Ðrst set of square
brackets are identical. Eqn. (21), and the analogous equations
involving the Kihara surface and volume functionals, admit
the representation of the geometric functionals, andR3

i
, S3

i
V3

i
,

as Ðrst-rank tensors :

R3
i
\ R3

i
Se S ] R3

i
AeA

S3
i
\ S3

i
Se S ] S3

i
AeA

V3
i
\ V3

i
Se S ] V3

i
AeA

8
, (22)

in which the two orthogonal unit vectors, and deÐne theeS eA ,
two-dimensional vector space for the symmetric and anti-
symmetric components, respectively, of the geometric func-
tionals. In the Ðrst line of eqn. (22), represents theR3

i
S

symmetric terms in the Ðrst set of square brackets of eqn. (21),
and the anti-symmetric di†erence terms in the second set ;R3

i
A

there are analogous Kihara functionals and in theS3
i
, V3

i
,

second and third respectively. The symmetric contributions in
eqn. (22) are always positive ; the asymmetric contributions
can be either positive or negative, depending upon the partic-
ular geometry of the body.
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For example, consider again a tetrahedron, which is a
convex body. Imagine an initially regular tetrahedron, with
the apices of its base at [(a,0,0), ([a,0,0,), (0, and itsaJ3,0)],
resulting geometry after that base has been deformed (with the
fourth apex, out of the plane, remaining Ðxed) such that the
base apices are at the new positions [(a,0,0), ([a,0,0,), (d,

i.e., by a deformation by which one of the apices isaJ3,0)],
moved parallel to its opposite side. The hard body which
results from such a distortion, while still convex, is chiral ; and
a collection of molecules of such geometry will be optically
active. The same tetrahedron similarly but oppositely
deformed, with the position of its third apex above the plane
of its base remaining Ðxed in both cases, to positions [(a,0,0),
([a,0,0,), ([d, is also chiral, but clearly of oppositeaJ3,0)],
chiral sense. Clearly, a mixture of regular tetrahedra and ones
deformed as described above cannot occupy the same
minimum volume as would the regular tetrahedra alone,
although the volumes of the respective deformed tetrahedra
remain unchanged. Equally clearly, the product of the radius
of curvature of the deformed tetrahedron and the surface of
the regular one would be increased, and, to terms linear in the
deformation, approximately by a factor proportional to d. It
deserves to be noted that the parameter of distortion, d, need
not be necessarily small ; the base of the tetrahedron can be
made very scalene, and the tetrahedron will remain a convex
hard body.

3.2 Extension of the equations forPavl•� c— ek–Nezbeda–Boubl•�k
mixtures of aspherical hard-body systems

In order to develop the most general analysis possible of the
thermodynamic stability of systems of chiral particles, such
are described by the statistical mechanical formalism of hard
bodies. The equation of state for the pure hard-sphere gas
given by scaled particle theory (SPT)23 represents one of the
(very) few exactly-solvable problems in modern statistical
mechanics. SigniÐcantly, scaled particle theory developed its
major componentÈthe equation for the probability that the
center of a particle exists within a radial shell at a certain
distance, subject to the condition that the region deÐned by
such radius be devoid of particlesÈfrom analysis of statistical
geometry. Later, Reiss, Frisch and Lebowitz24 extended SPT
to describe mixtures of hard spheres. Twenty years after its
Ðrst enunciation, scaled particle theory was extended further
by Nezbeda and to describe mixtures ofPavl•� c— ek, Boubl•� k
convex, hard-body gases,25 using essentially arguments from
statistical geometry and the precise descriptive parameters for
such developed by Kihara and Steiner. Because the

equations represent an extensionPavl•� c— ekÈNezbedaÈBoubl•� k
of scaled particle theory, they share its rigor and precision, as
well as the same of the di†erential geometric formalism of
Steiner. For that reason, the Pavl•� c— ekÈNezbedaÈBoubl•� k
equations have been used to examine the statistical thermody-
namic stability of mixtures of chiral hard bodies.

The equation of state is :Pavl•� c— ekÈNezbedaÈBoubl•� k

p
RT

\ o

3
1 ]

1 g
1 [ g

]
(r8 s8 )
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9p2(1[ g)3

24

(23)

in which the molecular geometric functionals were originally
deÐned by Nezbeda and as :Pavl•� c— ek, Boubl•� k
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(24)

The shape-dependent parameters q, r, s, t and w are weighted
sums of the functionals of the respective support functions
which describe the volume and surface generated by the
rolling of one hard body around the surface of another, in all
possible orientations ; g represents the weighted packing frac-
tion, the molar fractions. The individual functionalsx

i
R3

i
, S3

iand are deÐned tensorially by eqn. (22). The tensor contrac-V3
itions of their products, such as etc., which enter ther8 s8 , q8 s8 , r8 t8 ,

equation of state, eqn. (23), arePavl•� c— ekÈNezbedaÈBoubl•� k
deÐned using the two-dimensional identity matrix and the Ðrst
of the Pauli matrices,

A1 0

0 1

B
\ I2

A0 1

1 0

B
\ r1Pauli

8
. (25)

Because the vector space deÐning the degree of geometric
chirality spans two dimensions, only one of the Pauli matrices
is required ; and the tensor properties of the geometric func-
tionals are described using the symmetric and anti-symmetric
operators

rS \ I2] r1Pauli
rA \ 2r1Pauli

H
. (26)

The contraction of the geometric vectors, and is then :v1 v2
v1v2 \ v1–v2\ v1(rChiral)v2 , (27)

where rChiral\ rs ] rA. For example, the contraction of the
geometric vectors r and s is thereby :

rs \
A
;
i

x
i
R3

i

B
(rChiral)

A
;
j

x
j
S3
j

B
. (28)

For the case where there exist only the two enantiomers, D
and L, the product function rs given by eqn. (27) and (28) has
the form:

(rs)DL \ (xD R3 D)rChiral(xL S3 L)

\ xD2(R3 DS S3 DS ]R3 DA S3 DS ]R3 DS S3 DA ]R3 DA S3 DA)

] xD xL(R3 DS S3 LS ] R3 LS S3 DS ]R3 DA S3 LA ]R3 LA S3 DA)

] xL2(R3 LS S3 LS ] R3 LA S3 LS ] R3 LS S3 LA ]R3 LA S3 LA) (29)

Plainly, eqn. (27) and (29) return the identical expressions for
symmetric, achiral molecules as do the original KiharaÈ
Steiner equations. Equally plainly, eqn. (27) and (29) return
the correct equations for single-component systems, given by
either the Ðrst or third lines of the expansion of Most(rs)DL .
importantly, the second line of the expansion of gives an(rs)DLadditional contribution only in mixtures. There are similar
contributions for chirality for the other functionals which
appear in the equation of state,Pavl•� c— ekÈNezbedaÈBoubl•� k

etc. Such cross-terms, which appear only(r8 t8 )DL , (w8 t8 )DL , (q8 s8 )DL ,
in mixtures, have all the units of volume and are responsible
for the excess volume. For two enantiomers, the anti-
symmetric components possess identical magnitude and
opposite sign :

R3 D \ R3 DS eS ] R3 DA eA
R3 L \ R3 DS eS [ R3 DA eA

H
, (30)

and similarly for both components of and for bothS3 D V3Denantiomers L and D. When eqn. (30) is applied, the ““excess ÏÏ
parameter (rs)E [the second line of the expansion of (rs)DL]takes on the particularly simple form:

((rsDL)E \ xD xL(R3 DS S3 DS [R3 DA S3 DA). (31)

3168 Phys. Chem. Chem. Phys., 2000, 2, 3163È3174



DeÐning the terms in the Ðrst (or third) line of the expansion
of as the product-functional rs may be written for(rs)DL (rs)DL0
a binary system as

(rs)DL \ (1[ 2xD ] 2xD2)rsDL0 ] 2xD(1[ xD)rsDLE . (32)

When the linear expansion has beenrsDLE \ rsDL0 (1 ] ersChr)applied, the product-functional has especially simple(rs)DLforms for the racemic and homochiral systems :

((rs)DL)homochiral\ rsDL0

((rs)DL)racemic\ rsDL0 ] rsDLE \ rsDL0
A
1 ]

e
rs
Chr
2

B
8

.
(33)

There are similar expressions for the other product-
functionals, rt, ts, etc., which will involve similar chirality
parameters, etc. In the following analysis, ae

rt
Chr, e

ts
Chr,

““minimalist ÏÏ perspective is taken, such that the e†ects of
chirality are taken into account for only the product-
functional rs ; therefore the subscripts will be dropped from
the parameter of chirality, e

rs
Chr.

Because this analysis involves the geometry properties of
the individual molecules, the system density, o, has been fac-
tored out of the geometric functionals so as to return the
alternate form of the equation ofPavl•� c— ekÈNezbedaÈBoubl•� k
state :
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(35)

When these molecular shape variables, A, B, and C are used,
the Helmholtz free energy of the mixed hard-body system is
written as :

F\ NkBT
C
[ln

A V
Nj3

B
[ 1 [ C ln(1[ g)]

g(Dg ] E)

(1[ g)2
D

(36)

in which j is the thermal de Broglie wavelength, and the vari-
ables D and E are related by,

D\
3C] B[ A

2

E\ A[ C

8
. (37)

It should be noted that the functions r, s, t, w and l, and
thereby also A, B, C, D and E, depend upon the molecular
geometric properties only and are not thermodynamic vari-
ables. Eqn. (34), (35) and (36) have been applied to calculate
the Helmholtz free energies, Gibbs free enthalpies and ther-
modynamic affinities of a large number of racemic and single-
component, chiral hard-body systems of diverse geometric
shape and degree of chirality, over a wide range of pressure
and temperature.

4 The racemic–scalemic transition : the onset of
unequal abundances of enantiomers in a chiral
system at high density
The direction of spontaneous evolution of any system is deter-
mined by its thermodynamic affinity, A(p,T , The secondMn

j
N).

law of thermodynamics, expressed mathematically by De

DonderÏs inequality,

dQ@\ A dm P 0

A\ [ ;
i, o, a

v
i, oa k

i, oa

8
, (38)

requires that the thermodynamic affinity be positive for any
spontaneous transition, for which the variable of extent is
m.26h29

The process of evolution here examined is that of the
racemicÈscalemic transition, which may be expressed as :

12CD ] 12CL] xD CD ] (1 [ xD)CL , (39)

where, in the scalemic state [right side of eqn. (39)], the molar
fraction The thermodynamic affinity for the onset ofxD D 1/2.
an unbalanced system of single-component enantiomers, from
one initially racemic, is :

A(p, T ; eChr, a)racemic?pure\ (12kD ] 12kL)racemic [ (kD)pure. (40)

When the thermodynamic affinity, eqn. (40), is negative, the
system either evolves in the opposite direction, toward a
racemic mixture, or remains as such. However, whenever this
thermodynamic affinity becomes positive, a racemic mixture
transforms to a scalemic one with unequal abundances of
enantiomers. For a single-mole system, the thermodynamic
affinity is simply the di†erence in the Gibbs free enthalpy of
the racemic and pure systems.

4.1 Theoretical analysis of a chiral hard-body system

The Gibbs free enthalpy has been calculated over the range of
pressures 1È500 kbar, at temperatures of 300 and 1000 K, for
a wide collection of convex hard-body systems of di†erent
molecular geometries, whose molecular mass and volume, l,
were taken to be, respectively, 105 g mol~1 and 65 cm3
mol~1, which values correspond roughly to those for single-
branched heptane or octane. The thermodynamic affinity was
calculated for general convex hard-body systems characterized
by values of asphericity a \ rs/(3l) \ 1.5, 2.0, 2.5, 3.0, 4.0, 5.0,
and for values of the prolateness parameter, b \ r2/s \ 1.75,
2.00, 2.25, 2.5, 3.0, 4.0. Identical calculations were performed
also for prolate ellipsoids with ratios of long to short axes of
1.75, 2.0, 2.5, 3.0, 4.0.

For each geometry, the respective system was examined for
the following values of the chirality parameter : eChr \ 0.025,
0.05, 0.1, 0.5, 1.0. The Gibbs free enthalpy was calculated in
each case for both the racemic and single-component systems.
Because a typical experimental value for measured molar
excess volume is approximately 1È10 cm3 mol~1 for simple
systems,22,30 for several geometries studied, the chirality
parameter, eChr, was speciÐcally chosen to produce an excess
volume of 1 cm3 at STP for a hard-body gas with the approx-
imate molecular and thermodynamic characteristics of octane.
The choice of 1 cm3 mol~1 for molar excess volume was
chosen as most reasonably conservative.

Consistent with the intention to take a conservative,
““minimalist ÏÏ approach for the analysis, the e†ects of chirality
were restricted to the product of the molecular parameters r
and s ; such that the product rs which appears in the

equations was applied as given inPavl•� c— ekÈNezbedaÈBoubl•� k
eqn. (29). All other molecular shape variables, q, s, t, w, and
their powers and products with rs have been left unchanged.
Such restriction constitutes a formidable underestimation of
the e†ects of chirality upon the thermodynamic functions, par-
ticularly upon the Gibbs free enthalpy. An e†ect of chirality is
always to increase the e†ective asphericity of the hard body,
and thereby also to increase the hard-body components of
both the pressure and the Gibbs free enthalpy ; an addition of
chirality cannot ever decrease the magnitude of those func-
tions, at any density or temperature. The property of aspheri-
cal hard-body systems has been demonstrated previously.31
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The results of all calculations are qualitatively identical. At
low pressures, and thereby low densities, the Gibbs free enth-
alpy of the racemic mixture is always lower, at all tem-
peratures and for every geometry. The contribution to the
Gibbs free enthalpy attributable to the entropy of mixing
dominates the system at low pressures, regardless of geometry.
However, at high pressure and for all values of the chirality
parameter greater than a certain threshold value, the contri-
bution to the Gibbs free enthalpy attributable to its excess
volume exceeds that of its entropy of mixing, and the affinity
abruptly changes sign, and remains positive for the racemicÈ
scalemic transition.

An example of the e†ect of pressure upon the thermodyna-
mic affinity is shown in Fig. 4, on a logarithmic scale of pres-
sure through the range 1È500 kbar, for typical systems of pure
and racemic particles of molecular mass 105 g mol~1 and
characteristic volume, t\ 65 cm3, with asphericity, a \ 1.5,
and degree of prolateness, b \ 2.25, for values of its chirality
parameter, eChr \ 0.025, 0.05, 0.1, 0.5, 1.0. These parameters of
molecular geometry represent very conservative measures of
asphericity, prolateness, and chirality ; the magnitude of eChr is
often substantially greater than one. The asphericity, a \ 1.5,
describes a molecule only modestly deformed from spherical,
and degree of prolateness, b \ 2.25, characterizes one for
which the length of its major axis is slightly more than twice
that of its minor axis ; these parameters are comparable to the
same, for example, of propane or butane, although assigned to
a larger molecule. The degrees of chirality, for which the great-
est is eChr\ 1.0, are also modestly taken. Mathematical mod-
eling for molecules as simple as 3-methylhexane indicates that
the di†erence in the product of the radius of curvature and the
characteristic surface of one enantiomer, and of its mirror
image, can easily be as great as 2È4. As shown in Fig. 4, an
increase of pressure has no discernable e†ect upon the system
below 1 kbar, excepting only for molecules of the greatest
degrees of both asphericity and chirality. However, above 1
kbar, the product of the excess volume and pressure begins to
shift the relative values of the Gibbs free enthalpy of, respec-
tively, the racemic and scalemic system. At pressures higher
than 10 kbar, the additional component to the Gibbs free
enthalpy of the product of the excess volume and pressure
begins to dominate the system; and, at sufficiently high pres-
sure, typically of the order of 20 000È450 000 atm, the contri-
bution to the Gibbs free enthalpy of the racemic mixture
attributable to its excess volume becomes greater than that
attributable to its entropy of mixing. At the density corre-
sponding to such pressure, the thermodynamic affinity of the

Fig. 4 The thermodynamic affinity, A(p, T ; a) of a chiral hard-body
system of asphericity a \ 1.5 and prolateness b \ 2.25 as a function of
pressure for di†erent values of the parameter of chirality, eChr.

system changes sign, and at greater densities, the Gibbs free
enthalpy of the scalemic system is lower than that of the
racemic one. As shown also in Fig. 4, for the lowest value of
the parameter of chirality, eChr \ 0.025, the thermodynamic
affinity does not change sign, and the system would remain
racemic at all pressures, which behavior is consistent with the
purely thermodynamic argument of section 2.

In Fig. 5 are shown the thermodynamic affinities for the
representative hard-body system, for each of the test values of
the parameter of chirality, on a linear pressure scale between
1È500 kbar. That the affinity for the lowest value of the chiral
parameter, eChr \ 0.025, does not change sign shows clearly.
Although the traces in Fig. 5 appear linear, they are not ; the
trace for the lowest value of the chiral parameter has a nega-
tive second derivative, and, at high pressures, the Gibbs free
enthalpy of the single-component system increases less rapidly
than that for the racemic one. The affinity, for that and lesser
values of eChr, never crosses the x-axis ; and the system remains
racemic.

If the molecular species comprising the enantiomers is gen-
erated at high pressure, as for example, hydrocarbon mol-
ecules from hydrogen and carbon, the system will evolve,
above the racemicÈscalemic transition pressure, a strongly
unequal distribution of enantiomers for which the abundance
ratio will be determined by the thermodynamic affinity and
the general law of mass action. If the system was initially com-
posed of both enantiomers, above the racemicÈscalemic tran-
sition pressure, it will either transform into one of an unequal
distribution of enantiomers, or will undergo phase separation ;
in such case, its speciÐc evolution will depend upon the tem-
perature and the transition rate for the processes by which
one enantiomer transforms into its chiral opposite.

4.2 Observation of the evolution of the chiral molecules
CHFClI and by Monte Carlo simulationC

8
H

12

The previous theoretical analysis was restricted to convex,
hard-body molecules. Such restriction allowed formal mathe-
matical precision at a cost of generality. In order to investi-
gate the racemicÈscalemic transition of more realistic chiral

Fig. 5 The thermodynamic affinity, A(p, T ; a) of a chiral hard-body
system of asphericity a \ 1.5 and prolateness b \ 2.25 as a function of
pressure for di†erent values of the parameter of chirality, eChr, on a
linear scale.
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molecules, isothermalÈisobaric Monte Carlo simulations have
been performed, over wide ranges of density, to calculate the
excess volumes of two Ñuids consisting of the fused-hard-
sphere molecules : Ñuorochloroiodomethane (CHFClI), and 4-
vinylcyclohexene Fluorochloroiodomethane is both(C8H12).chiral and not convex, although not strongly concave. The
molecule 4-vinylcyclohexene is strongly concave, as shown in
its ““ stick diagramÏÏ representation in Fig. 6.

The atomic coordinates for CHFClI were obtained with the
MM3 computer packages of Allinger et al.,32h34 and those of
4-vinylcyclohexene were known from previous work. For both
molecules each atom was modeled as a hard sphere with the
appropriate van der Waals radius, which was taken from the
data compiled by Emsley35 and reduced by approximately
10% to agree better with experimental data of their Ñuid den-
sities.

The simulation ensembles contained 256 or 512 molecules,
either pure enantiomers or a racemic mixture. A simulation
cycle consisted of attempted movesÈtranslation and
rotationÈof all molecules, followed by a random volume
change. After the system reached equilibrium, such that the
volume remained constant throughout a cycle, 150 000È
500 000 cycles were executed to obtain the thermodynamic
averages.

The Ðxed property in the simulation of a hard-body system
is the dimensionless pressure/temperature ratio :

pr \
ls3

kBT
p (41)

where is the length unit of the simulation, taken for theselsinvestigations as 1 The calculated property is the systemA� .
density or the molar volume. Thus a value corre-pr \ 0.3
sponds roughly to 12 kbar at 300 K. The di†erence of the
molar volumes of, respectively, the racemic mixture and the
pure enantiomer gives directly the excess volume. The simula-
tions reported here were limited to a maximum dimensionless
pressure of 0.3. At higher pressures, these samples undergo
partial solidiÐcation by the AlderÈWainwright transition.
Therefore, above such pressure, no meaningful density aver-
ages can be calculated.

The results of the Monte Carlo simulation investigations of
Ñuorochloroiodomethane and 4-vinylcyclohexene are shown
in Fig. 7. The negative values and Ñuctuations of the excess
volumes of both CHFClI and at low pressures are notC8H12

Fig. 6 4-Vinylcylohexene, C8H12 .

Fig. 7 Excess volumes of Ñuorochloroiodomethane, CHFClI, and 4-
vinylcyclohexene, as functions of reduced pressure.C8H12 ,

important ; for the thermodynamic chirality functional, QChr,
involves the integral of the excess volume over pressure.
Therefore, the high-pressure values of V E determine both QChr
and the Gibbs free enthalpy. It can be seen that, for both mol-
ecules studied, the pure enantiomer Ñuids have greater density
at high pressures. For interpreting the excess volumes, the
absolute uncertainty of the molar volumes and of the excess
volumes can be estimated as :

*V \
dV
dx

i

*x
i
\ [

V
x
i

*x
i
. (42)

Therefore, although the density of a dilute gas at the dimen-
sionless pressure of 0.001 can be calculated quite accurately,
the excess volume of the halogenated methane has (at that
value of a statistical uncertainty of approximately 1 cm3pr)mol~1 ; and therefore, in that case, a value for the excess
volume of 0.5 cm3 mol~1 must be regarded as insigniÐcant.
However, at high pressures, the statistical uncertainty
decreases to approximately 0.1 cm3 mol~1. Therefore these
calculated excess volumes must be regarded as signiÐcantly
positive.

5 Discussion
The phenomenon of optical activity in abiotic Ñuids has been
shown in the previous sections to be a direct consequence of
the chiral geometry of the system particles acting according to
the laws of classical thermodynamics.

(1) In section 2, the purely thermodynamic argument was
developed which relates the evolution of optical activity in a
system of chiral molecules to the excess volume of scalemic
mixtures. The thermodynamic analysis established that, above
a threshold value of excess volume, the Gibbs free enthalpy
becomes, at high densities, lower for an unequal, scalemic dis-
tribution of enantiomers.

(2) In section 3, the excess volume of a scalemic mixture of
enantiomers has been related to their geometric properties
using the KiharaÈSteiner equations, which have been
extended to describe particles which lack a center of inversion.
The chiral property described by the extension of the KiharaÈ
Steiner equations has been introduced into the

equations for mixtures of hardPavl•� c— ekÈNezbedaÈBoubl•� k
bodies, with which are calculated the Gibbs free enthalpies
and thermodynamic affinities of the hard-body systems.

(3) In section 4, formal calculations of the thermodynamic
affinities show that, in accordance to the dictates of the second
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law, a system of chiral molecules will often evolve unbalanced,
scalemic abundances of enantiomers at high densities. The
results of Monte Carlo investigations on the chiral (and non-
convex) molecules CHClI and demonstrate positive,C8H12increasing excess volume at high pressures, the prerequisite for
the racemicÈscalemic transition.

Although the formal analysis in the preceding section con-
sidered model systems composed of hard bodies, the results
there described hold true also, without qualiÐcation, for real
moleculesÈi.e., ones which possess additionally a long-range,
attractive, van der Waals-type component to their intermolec-
ular potential. The racemicÈscalemic transition occurs at a
density at which the free energy contribution attributable to
the product of the systemÏs excess volume and pressure
exceeds that attributable to its entropy of mixing. The former
is usually positive, the latter always negative. As indicated in
eqn. (12) and Fig. 1, and as demonstrated using eqns. (34), (35)
and (36), and as shown explicitly in Fig. 4, the onset of the
racemicÈscalemic transition occurs at increased densities. The
dependence of the racemicÈscalemic transition upon pressure
results from its control of the density. The attractive, long-
range, van der Waals-type component to the potential can
only act to increase the density, at all temperatures. Therefore,
the presence of a van der Waals-type component to the poten-
tial could not eliminate, or cause somehow to vanish, the
onset of the racemicÈscalemic transition in any Ñuid of real
molecules the geometry of whose short-range, repulsiveÈi.e.,
hard-bodyÈcomponent of potential imposes an increase in
the excess-volume component of the Gibbs free enthalpy the
magnitude of which exceeds its mixing-entropy component.

Many of the qualitative features of the racemicÈscalemic
transition can be understood by considering the virial expan-
sion of the chemical potentials which enter the thermodyna-
mic affinity. The chemical potential, when written in terms of
the virial coefficients, has the form:

k
i
(p, T ; a)\ k

i
I.G.(p, T )] (B2)i pi

] É É É , (43)

in which represents the second virial coefficient in theB2density expansion of the compression factor Z\ pV /nRT ,
and equals, to the Ðrst-order approximation of the virial
expansion, the natural logarithm of the fugacity coefficient.
For a mixed, hard-body gas, the second virial coefficient is,
exactly,
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and for the contribution of the ith component,
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For a binary mixture of enantiomers, the excess contribution
to the second virial coefficient is, when the approximation eqn.
(22) is applied :

(rs)DLE \ (rs)DL0 eDLChr. (46)

Comparing eqns. (46) and (9), one may note that

QL, D(p, T )D 4rseDLChr
p

RT
, at low pressures. (47)

When the Kihara asphericity parameter, a \ rs/3t, is intro-
duced into eqn. (47), the thermodynamic chirality function
may be approximated as,

QL, D(p, T )D 12taeDLChr
p

RT
. (48)

The approximation eqn. (48) indicates qualitatively many of
the principle characteristics of the racemicÈscalemic transition,
and, together with eqns. (12) and (13), provides a direct inter-

pretation of the limitations of the thermodynamic chirality
function described in section 2 :

(1) For a combination of hard-body molecular volume, t,
degree of asphericity, a, and parameter of molecular chirality,
eChr, there will exist a (usually high) pressure at which the
additional free energy attributable to the excess volume of a
racemic mixture will exceed that attributable to its entropy of
mixing.

(2) For a given parameter of chirality, eChr, the greater is the
degree of asphericity, a, the lower will be the density and pres-
sure of the racemicÈscalemic transition ; similarly, for a given
degree of asphericity, a, the larger is the parameter of chirality,
eChr, the lower will be the density and pressure of the racemicÈ
scalemic transition.

(3) For any combination of the degree of asphericity, a, and
the parameter of chirality, tChr, the larger is the hard-body
molecular volume, t, the lower will be the density and pres-
sure of the racemicÈscalemic transition.

(4) If the product of the hard-body molecular volume, t, the
degree of asphericity, a, and the parameter of chirality, eChr, is
less than a threshold value, the system will never undergo the
racemicÈscalemic transition no matter how high its pressure.
As noted in the previous section, these easily-understood
properties are exactly those demonstrated by many detailed
calculations of binary chiral, hard-body systems of diverse
degrees of asphericity, chirality and particle volumes.

The phenomena of expansion upon mixing, and segregation
(or phase separation) at high pressures, are interrelated. The
pressure dependence of the complex phase behavior of binary
liquid systems has been described generally by Rebelo.36 The
type of phase separation characteristic of the racemicÈscalemic
transition corresponds to liquidÈliquid equilibrium (LLE)
behavior described by Rebelo as either type 1 (or a) or type 3
(or c) as shown in Fig. 3 on page 4279 in the work cited. Both
types of Ñuid behavior manifest phase separation with
increased pressure and a lower critical solution pressure tran-
sition (LCSP) point. Therefore, a mixture of enantiomers with
favorable physical parameters should be expected to manifest
an LCSP. When a liquid mixture of enantiomers coexists with
its vapor under the constraints of eqn. (11), the system will
inevitably present an azeotrope, for the equal pressures of
both L and D enantiomers, combined with their non-ideal
behavior, assure that the pressure must be at an extremum.

As noted in section 2, for a system to manifest optical activ-
ity, the onset of the racemicÈscalemic transition must occur
before the system undergoes the high-pressure, AlderÈ
Wainwright, ÑuidÈsolid transition. The prediction of the
AlderÈWainwright transition by scaled particle theory has
already been discussed generally37 and further investigated
speciÐcally for aspherical, hard-body systems.31 The absolute
limits of the Ñuid phase of any system are determined by the
values of density at which its entropy vanishes. The

equations give such values by thePavlc— ekÈNezbedaÈBoubl•� k
roots of the equation :

5

2
] ln

A V
Nj3

B
\ [

(Shc)PNB
NkB

, (49)

in which the hard-core com-Pavl•� c— ekÈNezbedaÈBoubl•� k
ponent of the entropy, (Shc)PNB, is :

(Shc)PNB\ [NkB
C
C ln(1[ g) ]

g(Dg ] E)

(1 [ g)2
D

. (50)

The geometric functionals, C, D and E, in eqn. (50) are deÐned
in eqn. (35) and (37) ; and from those equations, one can per-
ceive quickly that the complexity of the relationships between
the KiharaÈSteiner functionals, and do not permit aR3

i
, S3

i
V3
isimple estimate for predicting the particular geometries for

which the onset of the racemicÈscalemic transition will
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precede the AlderÈWainwright transition. Because the roots of
eqn. (49) are determined primarily by the singularity of the

equation of state, eqn. (23), onePavl•� c— ekÈNezbedaÈBoubl•� k
might reasonably expect that the racemicÈscalemic transition
will most easily occur for particles of the greatest degrees of
asphericity and chirality, for a given molecular volume. In any
case, whenever the racemic Ñuid mixture has a positive excess
volume, one should reasonably expect the same property for
the solid phase and that, when the thermodynamic chirality
function is greater than the threshold value, as given by eqns.
(13) and (19), the Ñuid will solidify as mixed crystals, not as a
solid solutionÈas Pasteur observed in 1848.

In the formal analysis of hard-body Ñuids in section 2, the
chiral properties of the components were manifested through
their excess volumes for reasons of the geometric di†erences
described by eqn. (22). In general, the property of chiral hard
bodies can be set forth as :

R3 D \ R3 L S3 D \ S3 L V3D \ V3L
and
R3 D S3 D \ R3 LS3 L h . (51)
but
R3 D S3 D D R3 LS3 D \ R3 D S3 L

The properties set forth by eqn. (51) result automatically by
virtue of the strict satisfaction of eqn. (11) which assures that
the excess volume is attributable solely to the chirality.
However, in a case of closely-similar, but achiral, molecules,
for which or or both, there could existk1iB k2i, Vm, 1 B Vm, 2 ,
the circumstance for which

R3 1 B R3 2 S3 1 B S3 2 V31B V32
and
R3 1S3 1 B R3 2 S3 2 h . (52)
but also
R3 1S3 1 D R3 2 S3 2

A momentÏs consideration of the Pavl•� c— ekÈNezbedaÈBoubl•� k
equations assures that such a system could also undergo
phase separation, or (if possible) molecular conversion, analo-
gous to the racemicÈscalemic transition at high density. For
such, the pressure at which the thermodynamic affinity
changes sign, as in Fig. 4, would simply be shifted. Thus the
present formal analysis of hard-body systems subsumes the
cases investigated by Vlot et al.38h40 by molecular simulation.

This property just described perhaps states a very impor-
tant aspect of the phenomenon of optical activity in Ñuids : the
racemicÈscalemic transition is only one particular example of
the general, complex phase behavior characteristic of ““closely-
similar ÏÏ molecules at high pressure. The racemicÈscalemic
transition, or the onset of optical activity in Ñuids, is a
straight-forward phase-stability problem in chemical ther-
modynamics.

In summary : this analysis has demonstrated that the evolu-
tion of optically-active multicomponent systems is an inevita-
ble consequence of the universal geometric properties of the
directional, covalent bond, manifested in accordance with the
fundamental dictates of thermodynamic stability theory. This
analysis of the genesis of such of optically-active systems has
required neither invocation of any deus ex machina such as
““panspermia, ÏÏ nor any (highly questionable) suggestions of
some ampliÐcation of the parity non-conserving weak inter-
action involved in beta decay. The chiral property of certain
molecules is simply the inevitable consequence of the direc-
tional nature of the covalent chemical bondÈas characterized
by, for example, the single-branched alkanes. The optical
activity of abiotic Ñuid systems is an inevitable consequence of
the e†ect of the thermodynamic excess volume upon the
Gibbs free enthalpy, particularly at high densityÈas charac-

terized by, for example, natural petroleum. The racemic-
scalemic transition is simply one special example the complex
phase behavior manifested at high densities by multi-
component systems containing ““nearly-similar ÏÏ molecules.

Note added in proof
Note added in proof : the authors have just become aware

of two prescient early papers by Scott which take up the ther-
modynamic problem of the stability of mixtures of enantio-
mers.41,42 Although these papers do not analyze the details of
the molecular properties which determine whether phase
separation will occur (i.e., the magnitude of the thermodyna-
mic chirality functional), nor discuss enantiomeric conversion
processes, nor predict the racemicÈscalemic transition, they do
predict the phase separation of enantiomers. In his 1987
paper, Scott remarked, ““ . . . one has to Ðnd ÑuidÈÑuid phase
separation in racemic mixtures. ÏÏ With the Monte Carlo inves-
tigations of Ñuorochloroiodomethane and 4-vinylcyclohexene
described in section 4, such has now been done.

Appendix I.
Concerning the optical activity observed in systems of biotic
molecules

Although this article has addressed the phenomenon of the
evolution of optical activity in abiotic Ñuid systems, because of
the general interest in Ñuids containing molecules of biotic
origin, at least a few words are in order concerning the signiÐ-
cance of the present results for such. As has been pointed out,
the racemicÈscalemic transition depends upon the molecular
volume and degree of asphericity ; and the greater of each, the
more susceptible is the system to the racemicÈscalemic tran-
sition. The biotic molecules, including particularly those such
as DNA or cellulose, are very large molecules, and aspherical ;
both DNA and cellulose are also chiral. The estimated thresh-
old value of the binary thermodynamic chirality function,
QB 2, requires that for T B 300 and p \ 1 bar, a molar
excess volume of approximately V EB 4.8] 103 cm3 mol~1.
The size of, for example, a typical protein of approximately
200 units, is approximately 1È5 ] 10~10 cm3 molecule~1 ;43
and its molar volume is thus greater than approximately
1.2] 106 cm3 mol~1. The excess volume of typical mixtures
of unlike molecules is on the order of a few tenths of a percent
to a few percent of their individual molar volumes. Thus, even
a very small degree of chirality will endow a protein, or any
similarly large biotic molecule, with a molar excess volume for
which the entropy component attributable to the thermodyna-
mic chirality function will overwhelm the entropy of mixing,
at low pressures and all temperatures for which such mol-
ecules exist. Therefore, the phenomenon of optical activity in
systems of biotic molecules deserves to be considered simply
as a thermodynamic inevitability.

(Note : consideration of why terrestrial biotic systems mani-
fest entirely pure-component abundances of only a single
enantiomer, and always that of a single chirality, as, e.g., in
L-DNA, is beyond the scope of this present article. Such phe-
nomena will be addressed in a future article in which will be
taken up the subjects of phase stability, population dynamics,
and their interaction, of large chiral molecules.)

Appendix II.
Concerning the optical activity observed in material extracted
from meteorites

The introduction to this article refers to observations of
optical activity in material extracted from carbonaceous mete-
orites, and to the decisive role which such played in the
recognition that optical activity has no intrinsic connection
with biotic matter or processes. For that reason, a few words
are appropriate concerning the signiÐcance of the results of

Phys. Chem. Chem. Phys., 2000, 2, 3163È3174 3173



this present analysis for the previous ones of meteorite
material.

Analysis of the material in carbonaceous meteorites has
established that their minerals, rocks, and agglomerated
material went through various stages of fractionation in the
course of formation. From their chemical composition and
calculated velocity of cooling, the carbonaceous chondrites
have been ascertained to be high-pressure remnants, originally
formed at depths between 70È150 km in parent celestial
bodies whose diameters were more than 800 km, and perhaps
as great as 2500 km.44 The observations not only of heavy
hydrocarbon molecules but also of diamond minerals, in their
cubic (diamond), hexagonal (lonsdaleite), and mixed (chaoite)
forms, in such as the Novo Urei, Goalpara, and North Haig
meteorites, attest to their high-pressure history.45

Thus the present thermodynamic analysis of optical activ-
ity, which has invoked no speciÐc material properties except
the necessary one of molecular chirality, is consistent with the
astrophysical and chemical analysis of materials extracted
from meteorites. The results here reported both conÐrm and
support the previous analyses of the material from meteorites.
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