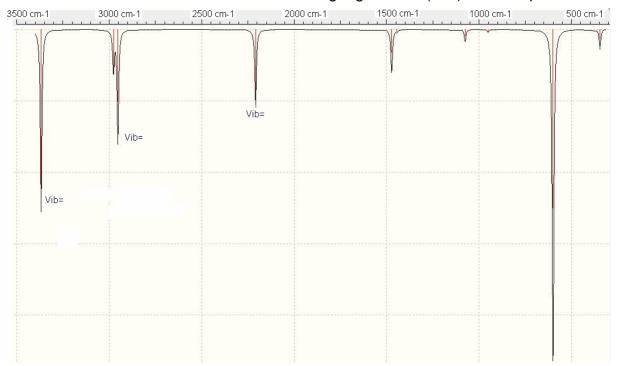
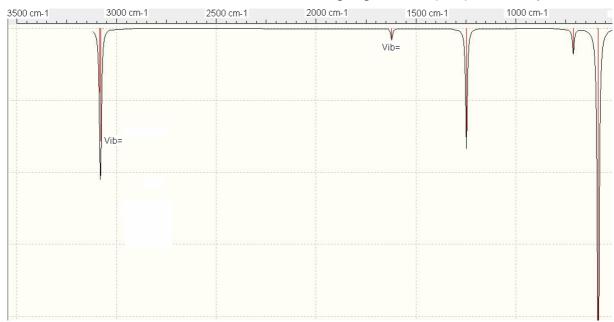
Klausur zur Ringvorlesung "<u>Schwingungsspektroskopie</u>" SS 2007 (Alder-HS, Do 28. Juni 2007, $14^{:00}$ - $15^{:00}$) Σ = 10 Pkt

Vorname:	Matrikel-Nr.:
Nachname:	Studiengang:
Semester: <u>Lösungen bitte NUR unter die Aufgaben</u> . Rückseiten (=Schmierpapier) werden nicht gewertet!	


Aufgabe 1 (2 Pkt.)

Skizzieren Sie, unter Zuordnung von je drei charakteristischen Banden, die IR-Spektren (mit Beschriftung der Koordinatenachsen) von

a) Toluol


b) Ph-CD₃

<u>Aufgabe 2</u>^(4 Pkt.) Ordnen Sie - *jeweils begründet* - einem Molekül zu und interpretieren Sie für Ihre Auswahl die drei höchsten Schwingungsmoden (VIB=) des IR-Spektrums:

- a) pro: contra:
- b) CH₃——H pro: contra:
- c) pro: contra:
- d) H H Pro: contra:

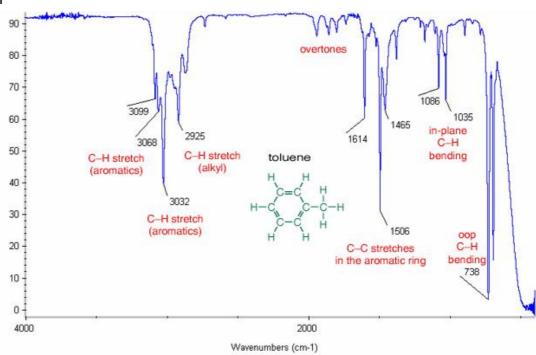
<u>Aufgabe 3</u> (4 Pkt.) Ordnen Sie - *jeweils begründet* - einem Molekül zu und interpretieren Sie für Ihre Auswahl die zwei höchsten Schwingungsmoden (VIB=) des IR-Spektrums:

- a) pro: contra:
- b) pro: contra:
- c) H O pro: contra:
- d) H Pro:

LÖSUNGEN Klausur zur Ringvorlesung "<u>Schwingungsspektroskopie</u>" SS 2007 (Alder-HS, Do 28. Juni 2007, $14^{:00}$ - $15^{:00}$) Σ = 10 Pkt

Vorname: Mathilde Matrikel-Nr.: 9999

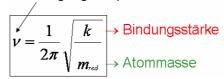
Studiengang: Chemie, Ma Nachname: Musterstudi

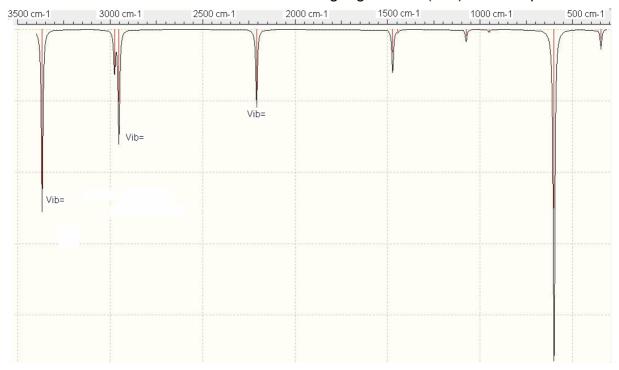

Semester:

Lösungen bitte NUR unter die Aufgaben. Rückseiten (=Schmierpapier) werden nicht gewertet!

Aufgabe 1 (2 Pkt.)

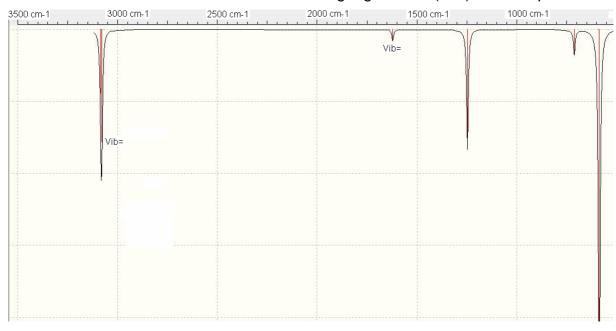
Skizzieren Sie (unter Zuordnung der charakteristischen Banden) die IR-Spektren von


a) Toluol


b) Ph-CD₃

v C-D (sym, asym) aus H₃C vs. D₃C- wegen größerer D (vs. H) -Masse zu kleineren Wellenzahlen verschoben, C-H aromat. bleibt!

Schwingungsfrequenz


<u>Aufgabe 2</u>^(4 Pkt.) Ordnen Sie - *jeweils begründet* - einem Molekül zu und interpretieren Sie für Ihre Auswahl die drei höchsten Schwingungsmoden (VIB=) des IR-Spektrums:

$$v$$
 sp-C-H v sp3-C-H v C \equiv C

- pro: hat sp3-C-H contra: hätte sp2-C-H, hat kein sp-C-H, hat keine Dreifach-Bd oder Kumulen
- b) CH_3 \longrightarrow H pro: hat sp-C-H, hat sp3-C-H, hat v $C \equiv C$ \Rightarrow **positiv** contra: -
- pro: hat sp3-C-H contra: hätte sp2-C-H, hat kein sp-C-H, hat keine Dreifach-Bd oder Kumulen
- H H H Pro: hat v asym Kumulen contra: hätte sp2-C-H, hat kein sp-C-H, hat kein sp3-C-H

<u>Aufgabe 3</u>^(4 Pkt.) Ordnen Sie - *jeweils begründet* - einem Molekül zu und interpretieren Sie für Ihre Auswahl die zwei höchsten Schwingungsmoden (VIB=) des IR-Spektrums:

v sp2-C-H v C=C

a) 🚫

pro: hat sp2-C-H contra: hätte sp3-C-H

b)

pro: hat keine sp3-C-H, hat sp2-C-H, hat sehr schwache (asym.) v C=C \Rightarrow positiv contra:-

c) H O

pro: hat keine sp3-C-H, hat sp2-C-H contra: hätte <u>sehr intensive</u> v C=C

d) H

pro: hat keine sp3-C-H, hat sp2-C-H contra: hätte v asym Kumulen