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ABSTRACT

A four-dimensional variational (4D-var) data assimila-
tion system intended for operational application to strato-
spheric trace gas observations is being developed. The
Kernel of this new system is a novel stratospheric global
chemistry circulation model (GCCM) and its adjoint ver-
sion. The German Weather Service’s global forecast
model (GME) with its icosahedral discretisation scheme
serves as an online meteorological driver for the GCCM.
As a first application of the new system, ENVISAT MI-
PAS data has been assimilated for a selected period. It
can be demonstrated that the assimilation procedure gains
a considerable improvement over legacy model runs, as
the discrepancies between observations and the model
are significantly reduced, while chemical consistency is
maintained by the computationally costly, but efficient
4D-var technique.

Key words: variational data assimilation, ENVISAT, MI-
PAS.

1. INTRODUCTION

Satellite data from space borne platforms such as EN-
VISAT and others provide unique possibilities of global
measurements of stratospheric trace gases. To make
optimal use of this data, that is scattered in time and
space and that originates from different sensors, a data
assimilation system with the ability to produce chemi-
cal consistent synoptic maps of stratospheric constituents
is needed. Advanced spatio-temporal data assimilation
methods provide a powerful technique to combine ob-
servations, statistical information, and three-dimensional
chemistry circulation models into an analysis which the-
oretically has the desired property of a ”Best Linear Un-
biased Estimate” (BLUE) of the stratosphere’s chemical
state. There are two families of algorithms, which com-
ply with the BLUE property while making use of models:

the four-dimensional variational data assimilation tech-
niques (4D-var) and the Kalman filter methods. In at-
mospheric chemistry Fisher and Lary [1] pioneered the
4D-var method in a multiple trajectory example with a re-
duced stratospheric chemistry mechanism. A first 4D-var
system with complex tropospheric chemistry in an Eule-
rian chemistry transport model context was presented by
Elbern and Schmidt [2, 3], where surface in situ measure-
ments from ozone were assimilated. It could be demon-
strated that the assimilation based analysis results, which
involve all species of the CTM in the 4D-var context, lead
to an improved ozone forecast for the following day. The
first full stratospheric chemical 4D-var assimilation sys-
tem was developed and applied to CRISTA data by Errera
and Fonteyn [4].

In the present paper, the new data assimilation system
SACADA (SynopticAnalyses forChemical constituents
with AdvancedDataAssimilation) will be described. In-
tended for routine operation at the German Remote Sens-
ing Data Centre (DFD), SACADA, at its final stage, is
designed to comply with the following requirements:

i optimal use of temporally and spatially scattered
satellite retrievals from all types of sensors and for
all available species included in a state of the art
stratospheric chemistry mechanism, as well as oc-
casionally available balloon borne measurements,

ii maintenance of chemical consistency in terms of the
chemistry mechanism applied, envisaged to result in
the

iii ability to extend the assimilation based analyses to
unobserved species, which are strongly chemically
coupled with observed constituents,

iv cross validation between satellite data from different
sensors and the analysis,

v preservation of dynamical consistency, especially
ensuring correctness of vertical winds , and

vi preserving numerical efficiency for daily routine
analyses to be made available and archived in near
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real time, including parallel computing and portabil-
ity.

The usage of either the 4D-var or Kalman filter technique
enables an improvement in the knowledge of concentra-
tion levels of species which are not directly observed
(item i). The consistency of dynamics (item v) will be
achieved by online coupling of the meteorological driver
and the chemistry transport module to a General Chem-
istry Circulation Model (GCCM).

The next section describes the assimilation system con-
cepts, aiming to meet the specifications, and details the
implementation issues of both the assimilation algorithm
and the model numerics. In section 3 the first results are
presented and the final section 4 gives an outlook to fur-
ther finalisation tasks.

2. METHODOLOGY

As the SACADA data assimilation system is built from
scratch, the following three fundamental system features
were selected to fulfil the demands:

• The design requirements i-iv enumerated above,
clearly limit the choice between the Kalman filter
and the 4D-var method. In the former case, only
severely complexity-reduced versions are admissi-
ble, even with future compute resources. Further-
more, for the Kalman filter, there is no guarantee
that the spatio-temporal trajectory of the analysis is
necessarily continuous at ingestion times of obser-
vations or that unnatural chemical imbalances are
suppressed. In contrast, the 4D-var method main-
tains continuous system trajectories throughout the
selected assimilation intervals, which is critical for
archiving purposes, and furthermore facilitates to
approximate concentration levels of a multitude of
unobserved species. It is therefore opted to apply the
4D-var approach, although this involves a time con-
suming development and application of the model
adjoint to the chemistry-transport module.

• As CTMs are usually driven offline by external me-
teorological analyses, enforcing temporal and spa-
tial interpolation, the vertical winds are often poorly
represented. To comply with requirement v, it has
therefore been decided, to keep the meteorological
driver model online in the assimilation system.

• Most computational burden is encountered at each
grid point, due to the solution of the chemical mech-
anism’s ordinary differential equation and its ad-
joint. This is an incentive for the use of parallel
compute platforms. On the other hand, traditional
model grid structures suffer from the poleward con-
vergence of grid points, introducing unwanted high
zonal resolution. As numerical efficiency is a key
issue, the application of legacy grid structure and
spectral methods is declined, in favour of an icosa-
hedral grid. In the case of the latter, an almost
isotropic grid point distribution can be preserved all

over the globe, thereby offering an avenue to satisfy
efficiency demands claimed in item vi.

2.1. The 4D variational data assimilation

The basic idea of 4D-var is to minimise a scalar cost-
functionJ , that measures the distance between a GCCM
model run and the observations within a predefined time-
span (also referred to as assimilation interval, and se-
lected as 24 hours in this study) on the one hand, and
an appropriate background field on the other:

J(x0) = Jb + Jo =
1
2

[
x0 − xb

]T
B−1

[
x0 − xb

]
+

1
2

N∑
i=0

[HMi(x0)− yi]
T R−1 [HMi(x0)− yi] .

(1)

Here x0 is the model state att = t0, xb is a back-
ground model state, usually obtained from a preceeding
forecast or assimilation run.yi is the vector of available
observations att = ti. H is a linear operator that maps
from model space to the observation space whileMi is
the non-linear model that integrates the initial concentra-
tionsx0 forward in time to yield the concentrationsxi at
t = ti. For a proper weighting of the reliability of in-
formation that is contained in the observations and in the
background fields, covariances of all quantities have to
be specified as accurately as possible by means of the co-
variance matricesB andR (whereR also includes the er-
ror of representativeness of the observation for the model
grid cell).

In order to find the minimum ofJ , the gradient of the
cost-function with respect to the initial concentrationsx0

is needed:

∇x0J =

B−1
[
x0 − xb

]
+

N∑
i=0

M∗
i H

T R−1 [Hxi − yi] .

(2)

M∗
i is the adjoint model operator that maps the gradient

of the cost-function w.r.t.xi backwards in time to deliver
the gradient ofJ w.r.t. the initial concentrationsx0. For
a more detailed description of the variational assimilation
technique for atmospheric chemistry applications, see [2]
or [5] for example.

A possibility of an a posteriori validation of the assimi-
lation result is given byχ2-evaluation of the final cost-
function valueJ after assimilation. As demonstrated by
Talagrand [6], a necessary but not sufficient condition is
J/N = 1/2, whereN is the number of available obser-
vations.

2.2. System Description

The data assimilation system consists of the meteorologi-
cal driver GME, the chemistry transport model and its ad-
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Figure 1. Icosahedral grid in a resolution ofni = 32 as
used for this study. The resulting mesh-size is∼250 km,
corresponding to a resolution of∼2.5◦ or T80. The Bor-
ders of the ten diamonds (see text) are marked by red
lines.

joint, the minimisation module and the covariance mod-
ule. These components will be described with emphasis
placed on the new SACADA GCCM.

2.2.1. Icosahedral Grid and Parallelisation

The new SACADA GCCM was designed for highest ef-
ficency in order to meet the requirements of the compu-
tational demanding task of four-dimensional variational
data assimilation. The icosahedral meteorological model,
grid structure and the definition of operators is adopted
from the German Weather Service’s GME, which is de-
scribed in detail in [7]. The icosahedral grid is con-
structed as follows: An icosahedron, i. e. the highest Pla-
tonic body with 20 equilateral triangles, is placed into a
sphere with the 12 touching vertices connected to their
neighbours along the sphere. The resulting great circle
sections are equally subdivided into a number ofni in-
tervals to form an almost regular grid (see Fig. 1). This
approach results in a mesh with virtually perfect con-
stant mesh-size all over the globe, avoiding the inefficient
non-uniform resolution common to conventional latitude-
longitude grids. Withni = 32 there are10, 242 grid-
points per level and the model comprises 42 levels in the
vertical, ranging from the earth’s surface to0.1 hPa. Fol-
lowing the focus placed on the stratosphere, the vertical
resolution here and at tropopause height levels is lower
than 2 km. To save CPU time, the chemistry and adjoint
chemistry computations are currently limited to 16 levels
from 100 hPa (∼ 16 km) to 2 hPa (∼ 42 km).

As each grid-point has six nearest neighbours (five neigh-
bours at the twelve vertices of the original icosahedron),
the area of representativeness is a hexagon (a pentagon at

Figure 2. Domain decomposition for 6 processors: Each
diamond is divided into six sub-domains. One processor
handles one sub-domain per diamond.

the twelve special points). To obtain a rectangular data
structure, two adjacent spherical triangles are combined
to form a diamond, partitioning the grid into ten logically
rectangular sub-grid domains (see Fig. 1). The meteo-
rological driver part, as preserved from the hydrostatic
GME, is kept online in the assimilation system, offering
an identical spatial and temporal discretisation for both,
the meteorological driver and the CTM module with its
adjoint. This is esteemed as especially valuable for im-
proved simulation of both types of vertical transports,
high tropical up-drafts into the lower stratosphere, and
tropopause exchanges, such as those induced by folds.

To facilitate the use of the model on parallel computers
a diamond-wise domain decomposition is performed as
shown in Fig. 2: Each processor works on one portion of
each diamond. This is a simple yet effective strategy to
achieve a good load balancing between processors. Sub-
domains have ahalo of two rows and columns of grid-
points that have to be exchanged among processors each
GCCM time-step using the MPI interface.

2.2.2. Chemistry Transport Module and its Adjoint

The set of reactions that are considered in the SACADA
GCCM comprises 148 gas phase and 7 heterogeneous re-
actions on PSC (ice and NAT) and sulphate aerosol sur-
faces. The reader should refer to [8] for a detailed de-
scription of the reaction mechanism including the treat-
ment of heterogenous reactions. An evaluation of this
scheme in comparison with other state of the art mecha-
nisms has been presented by Krämer et al. [9]. The cur-
rent implementation uses updated values for gas phase
reaction rates taken from [10]. Furthermore, to accom-
modate the operation of the adjoint model, a 2nd order
Rosenbrock scheme with adaptive step-size control as de-
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scribed in [11] is used to solve the chemical kinetic sys-
tem, with the consequence of abandoning the chemical
”family concept”. The KPP chemical solver tool was
taken for code generation [12]. A semi-Lagrange scheme
with second order interpolation has been adopted from
GME to solve the horizontal transport of trace gas con-
stituents, while the vertical transport is solved by means
of a simple and efficient upwind algorithm.

The adjoint model operatorM∗ which is needed for
the computation of the cost function’s gradient∇x0J
with respect to the initial concentrationsx0 (see Eq. 2)
was constructed starting from the forward code detailed
above, as described in [13]. This approach alleviates the
extensive and cumbersome coding work, because the task
can be partly automated by using adjoint compilers like
TAMC [14] andO∂ysśee[15].

In its present version, no simplifications have been intro-
duced into neither the SACADA CTM module nor its ad-
joint. Namely, the inversion of the Jacobian is performed
at each adaptive time step of the Rosenbrock solver.

2.2.3. Covariance Modelling and Minimisation

To specify the covariance matricesR andB in (1) and
(2) as accurate as possible is the most critical part in the
implementation of any data assimilation scheme. As far
as the observation error covariances are concerned, these
have to be delivered by the instrument group. Even more
important especially in the case of sparse data, are the
background error covariances, because the information
that is contained in the observational data is spread out
to neighbouring grid-points by means ofB. However, as
the dimension ofB is M×M , whereM is the dimension
of the model state vector, the storage demands, as well as
the fact that the extensive statistical knowledge required
is not at hand, prohibit a straightforward implementation
of B. Instead, an univariate background covariance oper-
ator may be modelled by means of a diffusion approach,
as shown in [16]. In the framework of this study a ho-
mogeneous, isotropic, and univariate horizontal correla-
tion was assumed with an ad hoc correlation length of
300 km. A more advanced 3-d correlation model, that
is based on rigorous statistics and allows for inhomoge-
neous and anisotropic correlation length is currently un-
der development.

The quasi-newton limited memory L-BFGS algorithm
devised in [17] and [18] is applied for minimisation.
Introducing a background error covariance matrix with
non-zero off-diagonal elements, renders the minimisa-
tion problem more ill-conditioned. The minimisation is
done in incremental space as described in [16], opening
the possibility to useB as a generally efficient precondi-
tioner.

2.2.4. Synthesis of Assimilation System Modules

The observational data from MIPAS, enclosed by each 24
hours assimilation window, is assimilated by a single iter-
ative assimilation procedure. The prologue is formed by

the meteorological driver model (GME) run over one day,
with the meteorological data stored for each grid point
and time-step. Compared to the chemistry model run and
its adjoint, consumed CPU time and storage of the me-
teorological prologue is negligible. The kernel operation
of the chemical assimilation part is, following the adjoint
concept, an iterative process (running on 16 stratospheric
levels for the purpose of this study), each step consisting
of the

1. forward direct chemistry run with storage of the con-
centrations prior to the horizontal transport and prior
to the chemistry calculation for each time step,

2. the adjoint backward run with recovery of the stored
values, and

3. the minimisation, resulting in improved initial val-
ues for the chemical constituents.

Following experience made so far, 15 iterations suffice
for a significant improvement of initial volume mixing
ratio values. Wall clock time expiration for this assimila-
tion scheme is about 7 hours on a PC-cluster consisting of
6 AMD Athlon 2 Ghz Processors. Hence, one can con-
clude that the demands of the 4D-var assimilation pro-
cedure in near real time operation, stay well within the
limits of today’s affordable computational power.

3. RESULTS

3.1. Observability Test Using Artificially Generated
Data

In order to explore the potential and limits of 4D-var
data assimilation applied to the particular problem of as-
similating ENVISAT MIPAS and SCIAMACHY obser-
vations, a suite of so called ”observability tests” was con-
ducted with artificially generated observational data. To
this end, the standard assimilation procedure was pre-
ceeded by a reference model run which represents the
true stateof the atmosphere within this experiment. Vol-
ume mixing ratios from selected species at selected grid-
points at different time-steps can be picked out and de-
clared ameasurement. Disturbed reference run initial val-
ues, i. e. reference run initial values multiplied by some
factor, serve as a first guess for the assimilation scheme.
Based on this experimental setup, the standard assimi-
lation procedure as described in section 2.2.4 is started
with the objective of recovering the true atmospheric state
(that is the known reference state). By varying the set of
selected species and/or the selection of observation time
and location, the response of the assimilation scheme to a
wide range of different observation scenarios can be stud-
ied.

Here we present the results of two experiments that aim to
prove the promised ability of 4D-var data assimilation to
analyse unobserved species at least in the idealised con-
text of these observability tests. To this end, two data sets
of ”observed” species have been defined:
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Figure 3. Results of observability tests; the analysis-
run RMS error divided by first-guess run RMS (see text)
is shown for each stratospheric constituent. Observed
species have green coloured bars. Upper panel: Results
for data set 1. Lower panel: Results for data set 2.

1. Standard Data Set + ClONO2 + BrO , consist-
ing of the operationally observed species O3, H2O,
CH4, N2O, HNO3 and NO2 extended by ClONO2
and BrO.

2. Extended Data Set comprising all species of data
set 1 plus NO, HNO4, CFC-11 and N2O5

Observations were assumed8.2 hours (model time step
50) after simulation start time (00:00 UTC) and it was
assumed that these observations took place at all model
grid-points. However, nighttime observation of BrO and
NO had to be discarded, because these trace gases al-
most vanish during night time in the stratospheric region
of interest. The first-guess initial values have been de-
rived from the reference run initial values by multiplying
them with a factor of1.9, resulting in a first-guess which
overestimates the atmospheric concentrations of all trace
gases by 90%. To quantify the success of the assimilation
scheme, two RMS errors are defined:

RMSfg =

√∑M
k=1(x

fg
k − xrf

k )2

M
and

RMSan =

√∑M
k=1(x

an
k − xrf

k )2

M
,

(3)

wherexfg
k , xan

k andxrf
k are the first-guess, analysis and

reference volume mixing ratio values of a trace gas un-
der consideration at grid-pointk. Thus these RMS er-
rors measure the misfit between the atmosphere’strue
state(reference run values) and first-guess and analysis-
run respectively. The results for the two experiments are
summarised in Fig. 3. The analysis-run RMS error di-
vided by first-guess run RMS, is shown for each strato-
spheric constituent, expressing the normalised residual
error. A value of1.0 means that no improvement has
been achieved during the course of the assimilation pro-
cedure, while a value of0.0 stands for a perfect recovery

Figure 4. Evolution of the cost function during the course
of the optimisation procedure; the value of the cost func-
tion normalised by the number of observations versus it-
eration number, is shown for all days of the assimilation
period.

of the true atmospheric stateas represented by the ref-
erence run. A considerable improvement can be claimed
for many species that are not directly observed in both
cases. Furthermore it is remarkable, that the standard
data set enriched by ClONO2 and BrO works almost as
well as the extended data set. It can therefore be con-
cluded, that the 4D-var method has a large potential to
provide for useful estimates of a large suit of unobserved
species. In real world applications, it should be observed,
that a sound preconditioning is prerequisite to exploit this
favourable property.

3.2. Assimilation of ENVISAT MIPAS observations

To demonstrate the performance of the new data assimi-
lation system, a period of ten days in October/November
2003 was selected for assimilation. Operational retrievals
from the MIPAS sensor in their presently latest version
(version4.61) have been used for assimilation. The set
of observed species comprises the six major stratospheric
trace gases O3, H2O, CH4, N2O, HNO3 and NO2. An ini-
tial first-guess for day 302 (Oct. 29, 2003) was produced
by using output of the SOCRATES 2-D model [19] and a
144 hours spin-up model run to relax the 2-D model state
towards a chemical equilibrium. Starting from this point,
observational data for 24 hours was consecutively assim-
ilated into the GCCM for days 302–311 (Oct. 29–Nov. 7,
2003), using the analysis from the previous day as a first-
guess and background field. This choice of background
ensures that the information that entered into the model
through the assimilation of observations the day before,
is retained and prior information is accumulated. If the
observational data is sparsely distributed, as it is the case
with ENVISAT MIPAS data, this strategy, in combination
with an accurate background covariance modelling, is es-
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Figure 5. Assimilated profiles for Oct. 29, 2003 (solid blue lines) and corresponding first-guess profiles (dotted black
lines) together with available measurements and observational error following data specifications. Profile location is
32◦N and36◦O.

sential for a meaningful global analysis of stratospheric
trace gases. Note that for this first test of the new assim-
ilation system, some coarse estimates for the background
covariances have been made. The background error was
set globally to 100% and the correlation of background
errors between two grid-points was assumed to be quasi
Gaussian (see [16]) with a correlation length of 300 km.
Both these parameter values are ad hoc choices due to
the present lack of adequate statistical knowledge. The
observational errors are taken from the operational MI-
PAS data set, and covariances between measurements are
not considered in this study, resulting in a diagonal error
covariance matrixR. A control model run (model run
without any data assimilation) was accomplished for the
same period of time.

In Fig. 4 the evolution of the cost function (normalised
by the number of observationsN ) is shown for all days
of the period under consideration. The almost mono-
tonically decreasing first-guess value ofJ/N (iteration
1) clearly indicates that the gain of additional informa-
tion that enters the model each day through the assim-
ilation of observations is accumulated. An a posteriori
inspection of the cost function value for the analysis (it-
eration 16), reveals decreasing values from3.5 down to
1.5, missing the targeted0.5 (see section 2.1) by a fac-
tor of three. A closer investigation of the variances and

covariances yields the result that the contribution of the
background term in Eq. 1 to the final value ofJ is very
small (below 2%), leading to the conclusion that the esti-
mated background error of 100% is rather too large than
too small. On the other hand the observational errors that
come from the operational data sets seem to be overly op-
timistic: Approximately one third of all data has a relative
error smaller than 5%, and two thirds has a relative error
smaller than 10%. There are even a few values with a
relative error below 1% in the data sets (these values are
excluded from the assimilation procedure because they
severely hamper the minimisation algorithm). Thus, we
conclude that the deviation ofJ/N from the theoretically
expected value0.5 is mainly caused by over-optimistic
small observational errors in the operational data.

Fig. 5 shows profiles of assimilated trace gas constituents,
together with the first-guess (background) profiles and
observations for the first day of the assimilation period
(Oct. 29, 2003). The overall result is very satisfying: The
analysed profiles meet the observations significantly bet-
ter than the first-guess does. Note, that some analysed
profiles, notably the HNO3-profile, appear to be very
variable from one model level to another. This shortcom-
ing is due to the fact that presently there are no vertical
background error covariances specified. In the case of
better known background error covariance statistics and
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with a respective implementation of this knowledge in
form of a proper 3-dB-operator, the assimilation system
would produce smoother profiles. As already mentioned
in section 2.2.3 a sophisticated 3-d implementation ofB
is currently under development.

Assimilation results for Nov. 7, 2003 compared with ob-
servational data and the result of the control run, i. e. the
model run which was not upgraded by any data assimi-
lation after its start 10 days before, are shown in Fig. 6.
In the case of O3 at the7.6 hPa model level (left col-
umn of Fig. 6), the a priori model state (control run)
was not too far from observations, but the information
about the observed lower ozone values in the arctic re-
gion is reflected in the assimilation result only. A much
more impressive improvement was achieved for HNO3 at
the 28 hPa model level (right column of Fig. 6) during
the course of the assimilation procedure. Volume mix-
ing ratios are globally too low in the a priori model state
compared to the MIPAS observations, while the analy-
sis shows no such discrepancy any more. Further exam-
ination of other height levels and species show similar
favourable assimilation skills.
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Figure 6. Results for Nov. 7, 2003; the top panels show the volume mixing ratio of 03 at 7.6 hPa (left column) and HNO3
at 28 hPa (right column) at 12:00 UTC for the control run (no assimilation). The ENVISAT MIPAS observations for the
same day, 00:00 UTC–24:00 UTC are displayed below. The bottom panels finally shows the analysis for 12:00 UTC,
obtained after consecutive assimilation of ten days’ observational data.
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4. SUMMARY

In total the first results obtained with the new SACADA
4D-var chemical data assimilation system demonstrate
both, a fully satisfying skill, and efficiency with respect
to its present state of development. First work on assim-
ilation of more comprehensive MIPAS data and SCIA-
MACHY LIMB and occultation data, as well as column
data, has partly begun. A thorough routine testing with
the compilation of Analysis–Observation error statistics
will replace the present case study based evaluation. Fu-
ture work will also focus on a non-homogeneous and
anisotropic covariance formulation in three dimensions.
The computational challenges include the formulation of
the problem as an operator, to circumvent the storage of
an inhibiting large matrix. Further, an extension of the
heterogeneous chemistry is planned. Progress in micro-
processor technology will allow for a grid refinement, re-
sulting in a grid resolution of about 170 km.
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