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6 Introduction

Objectives of Data Assimilation and Inverse Methods

”The objective of atmospheric data assimilation is to produce a regular,
physically consistent four dimensional representation of the state of the atmo-
sphere from a heterogeneous array of in situ and remote instruments which
sample imperfectly and irregularly in space and time. The regular, physically
consistent aspect of the procedure comes from the use of models, and thus
data assimilation is a discipline which naturally integrates theory (via models)
with sampled reality (via instruments).

Data assimilation

• extracts the signal from noisy observations (filtering),

• interpolates in space and time (interpolation), and

• reconstructs state variables that are not sampled by the observation net-
work (completeness).

(Daley, 1997)

The term inversion or inverse modelling is used in a somewhat broarder
sense. The Objectives of Inversion:

1. Estimates of dynamic fields by sparse observations, physical laws, and
statistical knowledge, to analyse consistent data sets and optimal initial
and boundary values (Data assimilation),

2. parameter estimates and parameter optimisation, of models and algo-
rithms,

3. sensitivity studies and solutions of ill–posed numerical problems,

4. optimisation of observation systems,

5. test of scientific hypotheses.

(Bennet, 1992)

Given K observations yo = ((yo)i, . . . , (yo)K)T and a regular grid with
N gridpoints x = (x1, . . . , xN )T , said the analysis or model grid. Usually,
K << N . We seek to identify or reconstruct or “analyse” the field of the ob-
served quantity on the analysis grid by observations, that is we try to find an
estimate of the most probable, or the least flawed state in terms of all available
information.
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Early Data Assimilation Algorithms

Local Interpolation

Given an x-y–plane a 2-dimensional polynomial may be adjusted to approx-
imate the parameter field, say geopotential height, the coefficients of which are
to be optimized to fit the observations yo. A quadratic algebraic polynomial
reads

z(x, y) = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2

It may be taken as valid local approximation for an environment around a
gridpoint. With coefficients avw, v, w ∈ {0, 1, 2} the optimisation problem is
then:
find avw such that

min
avw

Ki∑

k=1

wk((yo)k − z(xk, yk))2 , (1.1)

where Ki is the number of adjacent observations, wk the empirical weighting
coefficient, dependent on the distance between observation and model grid
point, and the quality of the observation.

t1 t2t3
t4

t5 t6

t7
d
&%
'$

Schematic of observation locations (solid dots), the enclosed positions 1,2,
and 3 of which are used to estimate the grid point value (open circle)

Nudging

Nudging is a data assimilation method affecting the model equations, by
adding a ”nudging term”, which denotes a weighted observation-minus-model
discrepancy (Newtonian cooling formulation) at the observation location i and
c the nudging coefficient:

∂xi
∂t

= M(x) + c((yo)i − xi).

For example, the zonal momentum equation with local nudging term reads

∂ui
∂t

= −vi · ∇ui + fv − ∂φ

∂x
+

((uo)i − ui)
τv
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with τ := 1/c the relaxation constant with unit 1/time.

The Statistical Viewpoint

Even most accurate observation techniques and most complete numerical
model implementations inevitably have some errors, the properties of which are
only known in statistical terms. Therefore formally, any observation or model
forecast can then be considered as a realisation of a random experiment. Data
assimilation then aims to exploit all data by weighting the contribution
of each information source according to their prior error estimate.

Let X be a random variable. The value, which is attributed to a random
variable by some experiment, say an observation or a numerical integration,
is designated a realisation x of X. Two estimators are frequently applied, to
identify the finally sought–after estimate xa of the always unknown true value
xt. One of the following optimality criteria is selected:

1. Minimal variance:

xam = {x̃ : min
ε̃
E(ε̃2) = E((x̃− xt)2) ∀ x ∈ X}, (1.2)

2. Maximum likelyhood:

xal = {x̃ : P (x̃) ≥ P (x) ∀ x ∈ X}, (1.3)

where P (x) := P (x = X) is the probability, that the random variable X has
the realisation x.

The observation
yo = xt + εo, (1.4)

with xt true value and εo observational error and additionally the error of
representativity for an amalysis grid resolution, is a realisation of the random
variable X, as the individually unknown observation error εo is a random
variable.

Any other datum, be it a second observation or a corresponding forecast or
a climatological value of the measurement given above, i.e. background or first
guess value or a priori knowledge, can also be considered as a realization of a
random experiment.

xb = xt + εb (1.5)

Let us be given an observation yo and a forecast xb for the same location and
time. We seek for an xa based on yo and xb and their respective error variances
εo and εb. with the smallest analysis error.

To proceed, we invoke the following assumptions

• the expectation (mean, average, first (statistical) moment)

E(εo/b) :=

∫ ∞

−∞
εo/bP (εo/b)dεo/b = 0 (1.6)
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which demands that there is no mean or systematic error (= unbiased)

• Variance (second central moment) of error as an inverse measure of ac-
curacy

E(x2
b) :=

∫ ∞

−∞
(xb−E(xb))

2P (xb)dxb =

∫ ∞

−∞
ε2b P (εb) dεb = σ2

b =: Vb (1.7)

and

E(yo
2) :=

∫ ∞

−∞
(yo − E(yo))

2 P (yo) dyo =

∫ ∞

−∞
ε2o P (εo) dεo = σ2

o =: Vo

(1.8)

• the data yo and xb are independent, that is, there is no covariance between
observations and the a priori information:

E(εoεb) = 0 (1.9)

We are seeking the estimator for xa as a weighted linear combination of two
competing information elements yo and xb, with as yet unknown weights wo
and wb such that

xa = woyo + wbxb (1.10)

with minimal variance Va.

Given the assertion xa unbiased (as yo and xb are unbiased), we find

E(xa) = E(x) = E(woyo + wbxb) = (wo + wb)E(xt). (1.11)

It follows that
wo + wb = 1. (1.12)

The optimality criterion selected is the minimal error variance of the esti-
mator Xa. Our tunable parameters are the weights wo and wb.

Va = σ2
a = E((xa − E(xa))

2)

= E((woyo + wbxb − xt)2)

= E((wo(yo − xt) + wb(xb − xt))2)

= w2
oE((yo − xt)2) + w2

bE((xb − xt)2)

= w2
oE(ε2o) + w2

bE(ε2b)

= w2
oσ

2
o + w2

bσ
2
b (1.13)

where (1.9) has been used.

Which wo and wb provide for the analysis xa with the smallest error variance
σ2
a?

Define a cost function J(wo, wb) to be minimised, subject to the constraint
(1.12) with the Lagrange multiplier λ

J(wo, wb) = σ2
a + λ(1− wo − wb) = w2

oσ
2
o + w2

bσ
2
b + λ(1− wo − wb), (1.14)
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given the neccessary conditions for the observational (o) and background (b)
case, independently

∂J

∂wo/b
= 2wo/bσ

2
o/b − λ = 0, (1.15)

from which follows

wo/b =
λ

2σ2
o/b

. (1.16)

Again with (1.12), λ can be expressed as

λ =
2σ2

oσ
2
b

(σ2
o + σ2

b )
=

2

(σ−2
o + σ−2

b )
. (1.17)

From (1.13) we finally obtain the optimal weights.

wo =
σ−2
o

σ−2
o + σ−2

b

, wb =
σ−2
b

σ−2
o + σ−2

b

. (1.18)

Hence, the minimal variance estimator reads

xa =
σ−2
o

σ−2
o + σ−2

b

yo +
σ−2
b

σ−2
o + σ−2

b

xb (1.19)

and is called a BLUE, Best Linear Unbiased Estimator.

The minimal variance of the analysis itself directly follows from (1.13)

σ2
a =

1

σ−2
o + σ−2

b

(1.20)

and therefore
1

σ2
a

=
1

σ2
o

+
1

σ2
b

xa
σ2
a

=
yo
σ2
o

+
xb
σ2
b

. (1.21)

It can be stated that
Va ≤ min(Vo, Vb) (1.22)

Variational Approach

Result obtained by variation of a cost function ( distance function,
objective function, test function ) J(x)

J(x) = (yo − x)2σ−2
o + (xb − x)2σ−2

b (1.23)

0 =
dJ(x)

dx
|x=xa = 2(yo − x)σ−2

o + 2(xb − x)σ−2
b (1.24)

it follows the same result as in (1.19)

xa =
σ−2
o

σ−2
o + σ−2

b

yo +
σ−2
b

σ−2
o + σ−2

b

xb (1.25)
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Formulation of the inversion problem

Given a vector space X ∈ IRN suitable to describe system states x ∈ X
of a fluid with sufficient accuracy. Further, a vector space Y for observations
yo ∈ Y cIRM . Finally, an operator H (forward interpolation, smoothing, filter,
or integration operator)

H : IRN− > IRM

x− > y = H(x)

As we are interested x, is there an operator H∗, with H∗(yo) = x

(Associated phrases:
”Given the answer, what was the question?” (Foffonov)
”Can you hear the shape of the drum?” (Wunsch) )

We consider the probability of a fluid to have the state x, that is p(x)dx :=
P (x0 ≤ x < x0 + dx) The Bayesian rule here reads (see Appendix):

p(x|y0) =
p(y0|x)p(x)∫

X
p(y0|x)p(x)dx

(1.26)

Here, the denominator is a statistical convolution integral, as with varying
fluid state x the conditional probability of its observations y0 changes.

Interpretation:

• p(y0) denotes the probability that for observations as realisations of tha
random variables Yi holds (Y1, . . . , YM)T = y0

• p(x) contains our statistical knowledge on the probability of the system
to take state x prior to the observations y0 (first guess, background
information, a priori knowledge), usually taken from climatologies or a
preceeding forecast,

• the likelyhood function p(y0|x) denotes the probability to observe y0, if
the system state is x

• we seek the probability of the most probable sytem state x, that is the
a posteriori distribution p(x|y0), given observations y0.

Example:
Observation and background error follow Gaussian error distribution:
Let us assume the probability p(x) of the true state x deviates from a forecasted
state or climatology xb (a priori knowledge, first guess, background) is described by
the normal distribution (Gaussian)

p(x) =: N (x|xb, σ2
b ) :=

1√
2πσb

exp

(
−(x− xb)2

2σ2
b

)
(1.27)
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(This also includes the assumption of unbiasedness (1.6).) Likewise, for the obser-
vations, we describe

p(yo|x) =: N (yo|x, σ2
o) :=

1√
2πσo

exp

(
−(yo − x)2

2σ2
o

)
(1.28)

We finally need the denominator of the Bayesian rule

p(yo) =

∫

X
p(y0|x)p(x)dx (1.29)

With the convolution theorem for the normal distribution

N (µ1, σ
2
1) ∗ N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2) (1.30)

(see for example Pfanzagl) we obtain

p(yo) =: N (yo|x, σ2
o + σ2

b ) :=
1√

2π(σ2
o + σ2

b )
exp

(
− (yo − xb)2

2(σ2
o + σ2

b )

)
(1.31)

If we set xa
σ2
a

= yo
σ2
o

+ xb
σ2
b

and again with 1
σ2
a

= 1
σ2
o

+ 1
σ2
b
, we arrive at

p(x|yo) =: N (x|xa, σ2
a) (1.32)

The most probable state is the maximum of p(x|yo), which as it is a Gaussian
distribution, is also the state with minimal variance. For convenience, we apply
the negative logarithm, to obtain a simpler expression, the minimum of which is
identical to the maximum of p(x|yo):

− ln(p(x|y0)) = − ln(p(y0|x))− ln(p(x)) + const

=
(x− xb)2

2σ2
b

+
(x− yo)2

2σ2
o

+ const

=
(x− xa)2

2σ2
a

+ const (1.33)
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Figure 1. Gaussian PDFs for, say, the a priori distribution (1.27) with xb = 3, σb = 5 (dotted),
the observation (1.28) with yo = 6, σb = 3 (dashed), and the resulting analysis (1.32) with xa
and σa following (1.21) (bold).

Appendix: basic statements from statistics

Given

1. a probablility space X (Grundraum) of all possible events of a random
experiment
Examples:

• die experiment X = {1, 2, 3, 4, 5, 6}
• all possible states of a fluid in discrete approximation

2. A a system of subsets from X
Examples:

• {x ∈ X = IN : x even}
• {x ∈ X = NAOflowpatterns : x withNAOindex > 0}

3. Function P: probability density function (PDF), which associates a prob-
ability P (A) to each A ∈ A

Probability theory then rests on the following axioms due to Kolmogorov

1. P (A) ≥ 0 ∀A ∈ A
(probability is nonnegative)

2. P (X) = 1
(it is certain that the system has one of all possible states)

3. An ∈ A are mutually disjoint, then P (∪nAn) =
∑∞

n=1 P (An)

A statistical moment of nth order is defined as
∫
xnP (x)dx

by integrating over the entire probability space. Of special interest are n = 0,
then

∫
P (x)dx = 1, the neccesary condition for P (x) being a probability den-

sity function; n = 1 results in the average value of x, while n = 2 results in
the variance.

Bayes’ Rule
Inverse modelling aims to identify the most probable representation of a system
(mostly in terms of gridded or spectral data), given some information (that
is, observations, background data, and the coded dynamical equations). The
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pertinent approach to estimate a latent property X by means of a manifest
property Y is Bayes’ theorem (Bayes, 1763, 1764). Let Ā be the complement
of A.

With P (A) being the probability of the parameter A having a value such
that a ≤ A < a + da, and P (A|B) the probability of a ≤ A < a + da, given
b ≤ B < b+ db, the probability of event A to occur, given event B, is

Let P (A|B) denote the probability that A is true, given (conditional to)
that B is true. Then the Bayesian Rule holds

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ā)P (Ā)
(1.34)

Proof:
P (A ∩B) = P (B|A)P (A) = P (A|B)P (B)

as, with the same reasoning

P (A ∩B) = P (A|B)P (B).

Further, from P (B) = P (B|A)P (A)+P (B|Ā)P (Ā), the Bayesian rule follows.

The Bayesian Rule is helpful to solve the following class of problems:
Let there be an event B, the occurence of which can be observed. Let there
be another property A (system state to be estimated), the occurence of which
is latent, but is correlated to event B.

Example
with discrete probability density distribution:
Box 1 contain red and white ballots with ratio 1:2
Box 2 contain red and white ballots with ratio 1:1
A red ballot is drawn from one of the unidentified boxes.
What is the probability that the red ballot has been taken from box 1?

Solution: Estimate P (box = 1|ballot = red)
We know:

P (ballot = red|box = 1) = 1/3, P (ballot = white|box = 1) = 2/3

P (ballot = red|box = 2) = 1/2, P (ballot = white|box = 2) = 1/2

P (box = 1) = 1/2 P (box = 2) = 1/2

Bayesian rule:

P (box = 1|ballot = red) =
P (ballot = red|box = 1)P (box = 1)

P (ballot = red|box = 1)P (box = 1) + P (ballot = red|box = 2)P (box = 2)

=
1/3 ∗ 1/2

1/3 ∗ 1/2 + 1/2 ∗ 1/2
= 2/5
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The Spatial Analysis Equations

We strive for estimating a latent, not apparent parameter set x, usually a geo-
physical field, which is to be analysed on a regular model grid, or an equivalent
representation like Fourier coefficients.

We dispose of
1. indirect information on the state and processes in terms of manifest, though
insufficient or inappropriate data y. Further,
2. we dispose of a deterministic model or observation operator or forward
interpolation operator H, mapping between the state vextor x and the dataset
y, such that

y = H(x), (2.1)

which, for simplicity, is assumed to be linear.

Bayes’ rule gives access to the probability of state x, given y and H.

prob(x|y,H) =
prob(y|x,H)prob(x|H)

prob(y|H)
(2.2)

Let us now assume that we dispose of some knowledge of the atmospheric
state to be analysed, prior to any manifest information, which is termed back-
ground or first guess information xb. After making use of climatological knowl-
edge in former times, xb is now usually provided by a short range forecast. Our
sought after result is an optimal estimate xa, the analysis of xa.

To make use of Bayes’ rule we must now make assumptions on the related
probabilities p. For the probability of some atmospheric state x to be true
p(x = xt) prior to further information by measurements, we set

p(x = xt) = pb(x− xb = xt) =: pb(x− xb) (2.3)
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expressing the random component of our knowledge. Likewise, any observa-
tions are affected by a random errors as well, giving

p(yo = yt) =: po(yo − yt). (2.4)

For the conditional probability of p(y = yt) given x = xb we set

p(y = yt|x = xt) =: po(yo −H(x)). (2.5)

For explicit calculations of p(xa|yo), we need to know pb and po. Typically,
we resort to Gaussian error characteristics for both pdf, giving

p(x− xb) ∝ exp[−1/2(x− xb)
TB−1(x− xb)] (2.6)

p(y − yo) ∝ exp[−1/2(Hx− yo)
TR−1(Hx− yo)] (2.7)

where

B := E
(
(x− xb)(x− xb)

T
)

(2.8)

R := E
(
(yt − y)(yt − y)T

)

are the background error and observation error covariance matrices, respec-
tively. H is the linearized observation operator H. We then find

p(x|yo) ∝ exp[−1/2(x− xb)
TB−1(Hx− xb)− 1/2(Hx− yo)

TR−1(Hx− yo)]
(2.9)

The searched for maximum of the PDF (probability density function) is at
the same location of the minimum of J := − ln(p(x|yo))

J (x) =
1

2
[xb−x]TB−1

0 [xb−x] +
1

2

{
y0 −H[x(t)]

}T
R−1

{
y0 −H[x]

}
. (2.10)

The gradient then reads

∇J (x) = B−1
0 [xb − x] + HTR−1 {yo −H[x + (xb − xb)]} (2.11)

where a trivial expansion is introduced for later manipulation. At the minimum
with the neccessary condition∇J (x) = 0, where we define the analysis x =: xa,
we obtain

xa − xb = (B−1 + HTR−1H)−1HTR−1
{
y0 −H[xb]

}
(2.12)

= BHT (R + HBHT )−1
{
y0 −H[xb]

}
(2.13)

with the latter result obtained by the following proof of a special case of the
Sherman–Morrison–Woodbury formula:

(
Rb H
HT −B−1

)(
w
δxa

)
=

(
δyo
0

)
(2.14)



17

First, eliminate w to find δxa = (B−1 + HTR−1H)−1HTR−1δyo. Upon
elimination of δxa, it is found that w = (R + HTBH)−1δyo. Using the
latter expression for substitution of w in the second row, we finally find
δxa = BHT (R + HTBH)−1δyo.

An alternative way to obtain K. As observation increment we define

d := yo − H(xb) (2.15)

= yo −H(xt)−H(xb − xt)

= ~εo −H~εb (2.16)

We are searching for an optimal weight matrix K, also known as gain matrix,
mapping the observation increment d linearly on the analysis increment δxa =
xa − xb

xa − xb = K d (2.17)

with the error
−~εb = xt − xb = K d− ~εa (2.18)

or
~εa = K d + ~εb (2.19)

~εa~ε
T
a = (K d + ~εb)(K d + εb)

T (2.20)

Seek for minimal |~εa| by differentiation with respect to the elements Kij of K
and equating with 0

0 = (K d + ~εb) dT (2.21)

Substituting d by (2.16) and taking expectations E {} gives

KE
{

(~εo −H~εb)(~εo −H~εb)
T
}

= E
{
~εb(~εo −H~εb)

T
}

(2.22)

Gain matrix K then is

K = E
{
~εb(~εo −H~εb)

T
} (
E
{

(~εo −H~εb)(~εo −H~εb)
T
})−1

= BHT (R + HBHT )−1 (2.23)

Upon resorting to (2.19), the analysis error covariance matrix A or Pa can
be obtained by

A = E
{
~εa(~εa)

T
}

= E
{
~εb(~ε

T
b + ~εb(~εo −H~εb)

TKT + K(~εo −H~εb)~ε
T
b + K(~εo −H~εb)(~εo −H~εb)

TKT
}

= B−BHTKT −KHB + KRKT + KHBHTKT , (2.24)

Introducing the explicit formula of K (2.23), the analysis error covariance
matrix A then reads

A = (I−KH)B (2.25)
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Alternative form

With the expression (2.12), ~εa can be written as

~εa = ~εb +
(
B−1 + HTR−1H

)−1
HTR−1(~εo −H~εb) (2.26)

=
(
B−1 + HTR−1H

)−1 (
HTR−1(~εo −H~εb) +

(
B−1 + HTR−1H

)
~εb
)

=
(
B−1 + HTR−1H

)−1 (
B−1~εb + HTR−1~εo

)
(2.27)

To obtain an alternative formulation of the analysis error covariance matrix,
use is made from

A = Pa = E
{
~εa(~εa)

T
}

= E
{(

B−1 + HTR−1H
)−1 (

B−1~εb + HTR−1~εo
) (

B−1~εb + HTR−1~εo
)T (

B−1 + HTR−1H
)−T)

=
(
B−1 + HTR−1H

)−1
(2.28)

Frequently, the expression is needed in its inverse form

A−1 =
(
B−1 + HTR−1H

)
=: P−1

a (2.29)

Practical implementation

Procurement of a priori information

The a priori knowledge, required to process the OI-formula (ref2.11) includes
the background field xb and the background error covariance matrix B. The
former is usually obtained from a preceeding short term forecast, in earlier days
from climatologies. As B is a purely statistical quantity, it must be estimated
in some way. The following parameters are usually of special importance:

• The variance of the quantity to be analysed, denoting the diagonal ele-
ments Bii of B.

• The distance to which correlations exist, or a suitable parameterisation
thereof L, is usually termed radius of influence or (de)correlation length.
L > 0 introduces off-diagonal elements of B. If L is not azimuth (direc-
tion) dependent, it is termed isotropic. If L is not location dependent,
it is termed homogeneous.

• If B comprises only a single atmospheric field parameter, say, tempera-
ture, or several parameters, which are not connected by correlations, the
formulation is termed monovariate, otherwise multivariate.

A classical way to estimate a monovariate B proceeds as follows: Compute
correlations Rkl between locations k and l, given time series of observations
yok|l(t) and model values xbk|l(t), with the assumption that observation errors
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do not correlate E {εokεol } = 0, and observation errors do not correlate with any
model error E

{
εokε

b
l

}
= 0. Then

Rkl =
E
{

(yok − xbk)(yol − xbl )
}

√
E
{

(yok − xbk)2
}
E
{

(yol − xbl )2
}

=
E
{

((yok − xtk)− (xbk − xtk))((yol − xtl)− (xbl − xtl))
}

√
E
{

((yok − xtk))− (xbk − xtk))2
}
E
{

((yol − xtl)− (xbl − xtl))2
}

=
E
{
εbkε

b
l

}
√(
E {(εok)2}+ E

{
(εbk)

2
}) (
E {(εol )2}+ E

{
(εbl )

2
})

=
E
{
εbkε

b
l

}
√

((σok)
2 + (σbk)

2)((σol )
2 + (σbl )

2)
(2.30)

In the limit, for any location k, l

lim
k←l

Rkl =
(σb)2

(σo)2 + (σb)2
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Multivariate covariance modelling

Given some observation increment yo(ri)−Hx(ri) 6= 0, other parameters at
the same location can be correlated sufficiently well to be assumed also deviat-
ing from the background. For example, a temperature observation increment
δT is likely to be correlated with a wind perturbation δu(r) with respect to the
background. Hence, we need covariances between temperature /geopotential
fields and wind fields, resulting in six auto– and cross–covariances.

Using Helmholtz’s theorem, can be used to express the wind fields as by
streamfunction ψ and velocity potential χ, and the related perturbations
δψ, δχ, respectively

δu = −∂δψ
∂y

+
∂δχ

∂x
, δv =

∂δψ

∂x
+
∂δχ

∂y
(2.31)

For correlations at locations ri = (xi, yi) we are then able to compute co-
variances formally. For example, for the covariance of u(ri) = u(xi, yi) and
v(rj) = v(xj, yj) it follows

E {δu(r1)δv(r2)} =: E {δu1δv2}

= −E
{
∂δψ1∂δψ2

∂y1∂x2

}
+ E

{
∂δψ1∂δψ2

∂x1∂x2

}
− E

{
∂δψ1∂δχ2

∂y1∂x2

}
+ E

{
∂δχ1∂δχ2

∂x1∂y2

}

(2.32)
We now assume homogeneous flow, that is, covariances are independent from
the individual location, only distance |r̃12| := |r1−r2| matters. Then, based on
arguments from turbulence theory applied to the determination of two-point
velocity correlations (Batchelor, 1953; Panchev, 1971, Monin and Yaglom,
1975), cross-correlation can be formally derived. Taking the first term of (2.32),
it can be set

E
{
∂δψ1∂δψ2

∂y1∂x2

}
= E

{
lim

∆y1→0

[
δψ1(x1, y1 + ∆y)− δψ1(x1, y1)

∆y1

]
∂δψ2

∂x2

}

= lim
∆y1→0



E
{
δψ1(x1, y1 + ∆y)∂δψ2

∂x2

}
− E

{
δψ1(x1, y1)∂δψ2

∂x2

}

∆y1




=
∂

∂y1
E
{
δψ1

∂δψ2

∂x2

}
(2.33)

With the analog procedure applied to the still infinitesimal term δψ2

∂x2
, and

defining ỹ = y1 − y2 and x̃ := x2 − x1 it follows that

E
{
∂δψ1∂δψ2

∂y1∂x2

}
=

∂2

∂y1∂x2
E {δψ1δψ2}

= − ∂2

∂ỹ1∂x̃2
E {δψ1δψ2} . (2.34)
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After proceeding with all covariances in the manner described above, the fol-
lowing relations result:

E {δuiδuj} = − ∂2

∂ỹ2
E {δψiδψj} −

∂2

∂x̃2
E {δχiδχj}+

∂2

∂x̃2∂ỹ2
(E {δψiδχj}+ E {δχiδψj})

E {δviδvj} = − ∂2

∂x̃2
E {δψiδψj} −

∂2

∂ỹ2
E {δχiδχj}+−−− ∂2

∂x̃∂ỹ
(E {δψiδχj}+ E {δχiδψj})

E {δuiδvj} =
∂2

∂x̃∂ỹ
E {δψiδχj} −

∂2

∂x̃2
E {δχiδψj}+

∂2

∂x̃∂ỹ
(E {δψiδψj} − E {δχiδχj})

E {δviδuj} =
∂2

∂ỹ2
E {δψiδχj} −

∂2

∂x̃2
E {δχiδψj}+

∂2

∂x̃∂ỹ
(E {δψiδψj} − E {δχiδχj})

E {δψiδuj} = − ∂

∂ỹ
E {δψiδψj}+

∂

∂x̃
E {δψiδχj}

E {δψiδvj} = +
∂

∂x̃
E {δψiδψj}+

∂

∂ỹ
E {δψiδχj}

E {δuiδψj} = +
∂

∂ỹ
E {δψiδψj} −

∂

∂x̃
E {δχiδψj}

E {δviδψj} = − ∂

∂x̃
E {δψiδψj} −

∂

∂ỹ
E {δχiδψj} (2.35)

It should be noted, that E {ψiuj} = −E {uiψj}. This is due to the sign
dependence of direction of derivative: given a positive increment ψi at some
location i, a positive increment uj will be engendered to its north. Conversely,
a positive increment uj will engender a negative increment ψi to its north.

Now we restrict attention to the purely geostrophic case, that is, only the
stream function ψ is further needed . Then the geostrophic relations fδu =
g ∂δh/∂y and fδv = −g ∂δh/∂x hold. In addition, we define the gepotential
covariance model

µij := exp− r2
ij

2L2
ψ

. (2.36)

Then

E {δuiδvj} = − g2

fifj
E
{
∂δhi
∂yi

∂δhj
∂xj

}
, (2.37)

and

E {δuiδvj} = − g2

fifj

∂2E {∂δhi∂δhj}
∂yi∂xj

= − g2

fifj

σ2
h∂

2µij
∂yi∂xj

(2.38)
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Variational approach and PSAS

We set again:
xa = xb + δxa, d := y−Hxb

Then

J(δx) = 1/2δxTB−1δx + 1/2(Hδx− d)TR−1(Hδx− d) (2.39)

Covariance matrices, like B, can be factorized by square roots (which are not
unique!).

B =
√

B
√

B, B−1 =
√

B−1
√

B−1 (2.40)

The cost function is minimized with respect to δx, that is a quantity in the
model or analysis space. The minimisation problem is however ill–posed, that
is, B is likely to have a poor condition number, namely if the radii of influence
are large. Condition numbers, that is the quotent of smallest and largest
eigenvalue, can be easily lower than 10−9. The minimisation problem is then
easily amenable for preconditioning with

v :=
√

B−1δx (2.41)

Then, the cost function reads

J(v) = 1/2vTv + 1/2(H
√

Bv− d)TR−1(H
√

Bv− d) (2.42)

The gradient with respect to v then is

∇vJ(v) = (I +
√

BHTR−1H
√

B)v−
√

BHTR−1d (2.43)

The Hessian matrix is

∇2
vJ(v) = (I +

√
BHTR−1H

√
B) (2.44)

Clearly, at the minimum, the transformed equation holds

(I +
√

BHTR−1H
√

B)v =
√

BHTR−1d (2.45)

which is obviously fully equivalent to the result

(B−1 + HTR−1H)δx = HTR−1d (2.46)

The Physical–space Statistical Analysis System (PSAS). Equation
(2.46) has been shown to be equivalent to

δxa = BHT (HBHT + R)−1d (2.47)

The Physical–space Statistical Analysis System (PSAS) aims to exploit the
frequently occuring situation, that there are considerably less observations
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than degrees of freedom in the model space. The critical step to solve (2.47)
is the the inversion of (HBHT + R), that is the solution of the equation

(HBHT + R)w = d, (2.48)

as w is the vector of analysis increments at the observation locations

δxa = BHTw (2.49)

Solving (2.48) is equivalent with solving the classical quadratic minimisation
problem with a new objective function F

F (w) = 1/2wT (HBHT + R)w−wTd. (2.50)

The gradient of F is then

∇wF (w) = (HBHT + R)w− d. (2.51)

Again, in practice, solving equation (2.53) needs to be preconditioned. This

has to be done with the variable in observation space w =:
√

R−1u . Equation
(2.53) then becomes

F (u) = 1/2uT (I +
√

R−1HBHT
√

R−1)u− uT
√

R−1d (2.52)

and the gradient

∇uF (u) = (I +
√

R−1HBHT
√

R−1)u−
√

R−1d (2.53)

and Hessian matrix

∇2
uF (u) = I +

√
R−1HBHT

√
R−1. (2.54)
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CHAPTER 3

A posteriori validation and Degree of Freedom of Signal

A posteriori validation in observation space

(to be delivered in electronic form)

A posteriori validation in model space

(to be delivered in electronic form)

Degree of Freedom of Signal

(to be delivered in electronic form)
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CHAPTER 4

Space–time data assimilation

Theory of Advanced Data Assimilation

Basically, today’s applications can be traced from two principal mathe-
matical disciplines, stochastic differential equations and control theory. Main
references for these area are for example, Jazwinski (1970) for the former, and
Lions (1971) for the latter. The objectives of the present section is to provide
a broader basis for the statistical foundation of advanced data assimilation al-
gorithms as it is used in atmospheric sciences, while placing special emphasis
on the problem formulation as an overdetermined system and to point out the
relations to other advanced data assimilation algorithms. The present theo-
retical exposition follows Lorenc (1986, 1988), Talagrand (1998), and Courtier
(1997). As far as possible the mathematical notation adopts the recommen-
dations expressed in Ide et al. (1997).

Maximisation of Probability

Let z ∈ IRm be the the available declarative information base, that is some
background knowledge and observations, and x ∈ IRn be the searched after
estimate of the state, conditional to the information contained in z. We then
have

P (x|z) =
P (z|x)P (x)∫
P (z|x)P (x)dx

. (4.1)

To proceed, two models of different types are required: 1. a numerical
model, which maps the system state x to the available data z in the information
space by applying coded geophysical relations, and 2. a statistical model,
describing the probability density function P (x|z).
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1. For expository purposes we assume the numerical model to be linear.
The general case is considered below. The data assimilation problem may be
formulated as searching for the solution of an overdetermined linear system:

z = Γxt + ζ, (4.2)

where z ∈ IRm denotes any declarative information. For most cases, this is a
merger of a priori knowledge and observations. Let the number of information
elements be m, while n be the dimension of the analysis or model space, matrix
Γ ∈ IRm×n, m > n, be one–to–one defining the observability condition, xt ∈
IRn be the “true” system state, and ζ ∈ IRn be the unbiased and unknown error
vector of z.

2. Assuming a Gaussian distribution to be sufficiently accurate, the proba-
bility density function P (x|z) in (4.1) of an analysis xa, given an information
basis z can be modelled as

P (x|z) ∝ exp[−1/2(Γx− z)TS−1(Γx− z)], (4.3)

where S := E(ζζT ) ∈ IRm×m is the known “information” error covariance
matrix.

The assumption of a Gaussian density distribution is generally made for
convenience. However, it is widely justified in most cases, where it describes
the measurement error characteristics of the dynamical meteorological param-
eters and gas phase constituents. Severe problems must be envisaged however
for the assimilation of humidity observations, and likewise for chemical species
under the impact of heterogeneous chemistry processes due to phase transi-
tions. In atmospheric chemistry data assimilation this problem has not yet
been considered. Since the present study is concerned with gas phase chem-
istry only, the potential error introduced by assuming a Gaussian error distri-
bution is esteemed to be within the error margins other model and information
uncertainties.

Upon applying the negative logarithm to (4.3), a weighted cost function
J (ψ) is found, which quantifies the discrepancy between two vectors of the
information space

− ln(P (ψ − z)) ∝ J (ψ) = (ψ − z)TS−1(ψ − z).

With the information error covariance matrix S being known, and given
z ∈ IRm, we solve for xa ∈ IRn, minimising

min
x
‖ z− Γx ‖S−1 (4.4)

with ‖ · ‖S−1 the Mahalanobis scalar product (·, ·)S−1 := 〈·,S−1·〉, subject to
the extremal condition

1/2
∂

∂x
〈z− Γx,S−1(z− Γx)〉 = −ΓTS−1(z− Γx) = 0. (4.5)
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The solution to this problem is given by

xa = (ΓTS−1Γ)−1ΓTS−1z, (4.6)

where xa has the property to be a Best Linear Unbiased Estimate (BLUE),
that is, E(xa − xt) = 0.

With (4.6) and (4.2), the associated analysis error is found to be xa − xt =
(ΓTS−1Γ)−1ΓTS−1(ζ).

Making use of E(ζζT ) = S it is easy to see that the analysis error covariance
matrix is

Pa := E
(
(xa − x)(xa − x)T

)
= (ΓTS−1Γ)−1. (4.7)

The Prognostic Model

An advanced spatio–temporal data assimilation procedure involves a model
M, which can formally written as a stochastic differential equation

dxt

dt
=M(xt) + η, (4.8)

with model error η. In data assimilation parlance, modelM is often referred
to as the ‘forward’ or ‘direct’ model. Upon differentiation with respect to x
we obtain

dδx

dt
=M(xt + δx)−M(x) = M′δx +O(‖ δx ‖2), (4.9)

where M′ is the model tangent–linear to M. Introducing the integration op-
erator or resolvent M(tj, ti), which propagates a perturbation δx(t) of the
state variable x(t) from time ti to time tj, a stepwise tangent–linear model
integration gives

δx(tn) = M(tn, tn−1)M(tn−1, tn−2) . . .M(t1, t0)δx(t0). (4.10)

For a direct inference of the observation–minus–model discrepancy yoi−Hix(ti)
at time ti we calculate Hix(ti) as the model equivalent to the observation set
yoi such that

yoi −Hix(ti) = Hiδx(ti) = HiM(ti, t0)δx(t0), (4.11)

where yoi ∈ IRpi is the vector of observations with pi = mi − n being the
number of available observations, and Hi ∈ IRpi×n is the forward interpolator
or observation operator.

The information vector z is now divided into two categories of infor-
mation sources, that is xb, as the a priori state, which can be obtained
from climatologies or antecedent forecasts, and the vector of observations
yo. Likewise, the operator Γ can be composed from an identity opera-
tor I and the model resolvents (4.30) for each time step [t0, . . . , tN ], G :=
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(H0,H1M(t1, t0), . . . ,HNM(tN , t0))T , with a concatenation of forward inter-
polators and the tangent linear model resolvent. The time interval [t0, . . . , tN ]
is called the assimilation interval or assimilation window. Observations outside
this time span are ignored. It can be seen that Γ and z may be split as

Γ :=

(
I
G

)
z :=

(
xb

y0

)
=

(
x + ζb

Gx + ε

)
. (4.12)

The error of the background estimate and the observations are ζ b and ε, respec-
tively. Assuming the errors of the background estimate and the observations
being uncorrelated, we set E(ζ bεT ) = 0. The background error covariance
matrix is then B = Pb := E(ζbζbT ) ∈ IRn×n and the observation error covari-
ance matrix is R := E(εεT ) ∈ IRp×p, with p = m − n the number of available
observations. Then the information error covariance matrix can be written as

S :=

(
Pb 0
0 R

)
. (4.13)

As a matter of convenience we assume that no linear combination of observa-
tions is perfect, that is, that R is nonsingular. Likewise, the background infor-
mation is assumed to be redundant, assuring that Pb is nonsingular. However,
as described in (Elbern and Schmidt, 2001), Pb has often a poor condition
number.

With (4.7), (4.12), and (4.13) and the application of the Woodbury formula1

we have for the analogy to the analysis error covariance matrix Pa ∈ IRn×n

Pa := (Pb−1
+GTR−1G)−1 = Pb−PbGT (GPbGT +R)−1GPb = (I−KG)Pb.

(4.14)
where

K := PbGT (GPbGT + R)−1 ∈ IRn×p (4.15)

is the Kalman gain matrix.

In the case of split and uncorrelated information sources (4.13), the analogy
to equation (4.6) can be derived, again by use of the Woodbury formula, as
follows (see also (2.14) :

xa = (Pb−1
+ GTR−1G)−1(I,GT )

(
Pb 0
0 R

)(
xb

y0

)

= (Pb−1
+ GTR−1G)−1Pb−1

xb + (Pb−1
+ GTR−1G)−1GTR−1y0

= (I−KG)xb +

(Pb−1
+ GTR−1G)−1(GTR−1GPbGT + GT )(GPbGT + R)−1y0

= (I−KG)xb + Ky0.

Hence we find
xa = xb + Kd (4.16)

with d := y0 −Gxb being the innovation vector.

1A familiar form of the Woodbury formula reads
(A + CBD)−1 = A−1 −A−1C(B−1 + DA−1C)−1DA−1
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Smoother and Filter Algorithms

In the framework of the variational calculus, problem (4.4) is reformulated
as an iterative minimisation of a cost function

J (ξ) := 1/2(Γξ − z)TS−1(Γξ − z).

After transfer into the form of two uncorrelated information sources (4.12) and
(4.13), the cost function then is

J (ξ(t0)) =
1

2
(xb(t0)− ξ(t0))TPb−1

(xb(t0)− ξ(t0)) +

1

2

N∑

0

(
y0(ti)−Hξ(ti)

)T
R−1(y0(ti)−Hξ(ti)). (4.17)

The minimisation of this quadratic expression is treated by classical minimi-
sation methods, say, quasi-Newton algorithms, which require the gradient of
J with respect to the optimisation parameter ξ(t0). This is easily found to be

∇ξ(t0)J = −Pb−1
(xb(t0)− ξ(t0))−

N∑

m=0

MT (tm, t0)HT
mR−1(y0(tm)−Hmξ(tm)).

(4.18)

As described above, the information contents introduced by the background
knowledge renders the optimisation problem formally overdetermined and acts
as a measure to reduce the ill-conditioning. On the other hand the background
error covariance matrix is likely to be ill–conditioned itself and may hamper
the minimisation procedure.

Formally, the preconditioning requires the calculation of the inverse, its
square root, and the inverse of the square root of the background error co-
variance matrix (Lorenc, 1988). Thus, the general approach is given by

the transformation v :=
√

Pb−1δx(t0), and the associated gradient reads
∇vJ (v) =

√
Pb

0∇ξ(t0)J . The transformed state v and ∇vJ (v) is the input
for the minimisation procedure, with the total costs J remaining unaffected
by the coordinate transformations.
Equation (4.25) is a smoothing data assimilation algorithm, as it provides for a
smooth adaption between the observations and the background values within
an assimilation interval. The constraint maintaining the smoothing property
is given by the dynamic model (4.8).

The minimisation by iteration is only a technical issue and a simultaneous
minimisation for all time steps within the assimilation interval is feasible, but
inefficient for very high dimensional problems. Formally, 4D–var and 3D–var
can be cast into the same algorithm, differing only in the inclusion of the time
dimension by model evolution.

In contrast ro smoother algorithms, sequential data assimilation algorithm
propagates in time and updates the system state at each instant of observation
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supply. Thus far, the background error covariance matrix Pb has been assumed
to be known. The Kalman filter (Kalman, 1960; Kalman and Bucy, 1962)
relaxes this requirement with elevated sophistication, as it not only estimates
the system state, but also the then purely spatial analysis error covariance
matrix Pa

i and the background error covariance matrix Pb
i for each time step

i. Pb
i is commonly referred to as the forecast error covariance matrix in this

context. Assuming a linear model integrator M(ti, ti−1) for simplicity, the
analysis based forecast is then

xf (ti) = M(ti, ti−1)xa(ti−1) (4.19)

to obtain the forecasted model state xf (ti+1). Preserving the unknown model
error η and εa := xa(ti−1)− xt(ti−1), equation (4.8) then modifies to

εf := xf (ti)− xt(ti) = M(ti, ti−1)εa − η (4.20)

Multiplying (4.20) by its transposed from the right hand side, applying the
expectation operator E and observing the analysis and model errors to be
uncorrelated, it is seen that the update of the forecast error covariance matrix
Pb
i is (Jaszwinski, 1970; Daley, 1991)

Pb
i = M(ti, ti−1)Pa

iM
T (ti, ti−1) + Q (4.21)

with Q := E(ηηT ) being the model error covariance matrix, assumed to be
known. Each time step i, which introduces new observations, results in a state
analysis xa(ti+1), that rests on the forecasted state xf (ti) and the innovation
vector di := y0

i −Hix
f (ti+1), weighted by the Kalman gain matrix. Observe

that now operator G is replaced by the mere forward interpolation operator for
time i, Hi. With obvious subscripts for time indexing the remaining Kalman
filter equations are readily available from prior derivations. We find

xa(ti) = xb(ti) + Kidi, (4.22)

Ki := Pb
iH

T
i (HiP

b
iH

T
i + Ri)

−1 ∈ IRn×pi (4.23)

and
Pa
i = (I−KiGi)P

b
i . (4.24)

Equations (4.20) and (4.21) are termed the forecast equations of the Kalman
filter, while equations (4.22), (4.23), and (4.24) are the analysis equations. It
is equation (4.21) which incurs the excessively high computational demands,
as it formally requires two model integrations per model dimension.
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Four–dimenional variational approach

As with 3D–var, the optimization problem may be condensed in a suit-
ably defined distance function J (x(t)) which is a measure of the model’s pre-
dictive skill with respect to observations. The scalar function J (x(t)) is to
be minimized, where x(t) is the vector valued state variable of the model.
A coarse outline of the procedure reads as follows: (i) find the gradient
∇x(t0)J of the distance function, and (ii) find xn+1(t0), n = 0, 1, . . . such
that J (xn+1(t0)) < J (xn(t0)), with the aid of ∇x(t0)J and previously cal-
culated gradients. (iii) Repeat this sequence until J becomes as small as a
prescribed threshold value χ2, to be inferred later.

Adjoint computation of ∇x(t0)J
For the sake of completeness and later notational reference, we will briefly

outline the approach that provides the gradient of the distance function by
means of the adjoint calculus. A mathematically strict and comprehensive
derivation is dealt with in Talagrand and Courtier (1987) and references
therein. The exposition here mainly follows this study.

The distance function J may be defined as follows:

J (x(t)) =
1

2
(xb−x(t0))TB−1(xb−x(t0))+

1

2

∫ tN

t0

(y(t)−Hx(t))T R−1(y(t)−Hx(t))dt

(4.25)

where J is a scalar functional defined on the time interval t0 ≤ t ≤ tN
dependent on the vector valued state variable x ∈ H with H denoting a Hilbert
space. The first guess or background values xb are defined at t = t0, and B
is the covariance matrix of the estimated background error. The observations
are denoted y and the observation and representativeness errors are included
in the covariance matrix R−1. For simplicity we assume direct observations of
the model’s state variables.

Denoting the inner product of H by bracketed parentheses 〈 , 〉, the
operator M′, mapping from H into H itself, has the adjoint operator MT ,
which is defined by 〈y,M′z〉 = 〈MTy, z〉 for all y, z ∈ H. For the remain-
der we drop the background term in (4.25), however introduce the model
equation (??) as a strong constraint with Lagrange multipliers λ(t). Set-
ting 1/2 (y(t)−Hx(t))T R−1(y(t)−Hx(t)) = O(t) for notational convenience,
equation (4.25) then reads

J o(x(t)) =

∫ tN

t0

(
〈λ, dx(t)

dt
−Mx(t)〉

)
dt (4.26)

Then, the variation of the distance function J o(x(t0)) can be expressed as

δJ o =

∫ tN

t0

(
〈∇xO(t), δx(t)〉+ 〈δλ, dx(t)

dt
−Mx(t)〉+ 〈λ, dδx(t)

dt
−M′δx(t)〉

)
dt

(4.27)
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=

∫ tN

t0

(
〈∇xO(t)− dλ(t)

dt
−MTλ(t), δx(t)〉+ 〈δλ, dx(t)

dt
−Mx(t)〉

)
dt+

λ(tN )δx(tN)− λ(t0)δx(t0),

where integration by parts was applied. Introducing the extremal principle
δJ o = 0, the integrand includes the inhomogeneous adjoint equation, which is
forced by the observation increment R−1(y(t)−Hx(t)) at time t

−dλ(t)

dt
−MTλ(t) = R−1(y(t)−Hx(t)). (4.28)

Again, integration of the tangent linear equation (4.9) gives the evolution of
an initial perturbation δx(t0) at later times tn and can formally be expressed
as

δx(tn) = LT (tn, t0)δx(t0), (4.29)

where the operator M(tn, t0) denotes the resolvent of M′ for the time interval
[t0, tn] acting on the initial state x(t0).

Designating LT as the resolvent of MT , it can be shown that LT (ti, tj), is
the adjoint of M(tj, ti), or, for any δx, λ, we have 〈λ(tN),M(tN , t0)δx(t0)〉 =
〈LT (t0, tN)λ(tN), δx(t0)〉. This is readily seen from the conservation of the
inner product of a perturbed state variable δx(t) and its adjoint λ(t), if external
forcing in (4.28) is excluded:

d

dt
〈λ(t), δx(t)〉 = 〈λ(t),M′δx(t)〉 − 〈MTλ(t), δx(t)〉 = 0. (4.30)

With the aid of (4.27) and (4.29) it is now possible to express δJ o as a
function of x(t0) alone

δJ o(x(t0)) =

∫ tN

t0

〈∇xO(t),L(t, t0)δx(t0)〉dt = 〈
∫ tN

t0

LT (t0, t)∇xO(t)dt, δx(t0)〉,
(4.31)

which finally leads to the desired gradient of J o, given in terms of a dis-
cretized expression of the adjoint operator LT (t0, t)

∇x(t0)J o =
N∑

m=0

LT (t0, t1)LT (t1, t2)...LT (tm−1, tm)∇xO(tm). (4.32)

It remains to be shown that ∇x(t0)J o = λ(t0). Defining the backward
initial condition λ(tN) = 0 and given a single instantaneous forcing λ(t′) =
−∇x(t′)O(t′) at any time t′, t ≤ t′ < tN , equation (4.28) may be rewritten,
again in exact form for convenience, as

∂

∂t
LT (t, t′)∇x(t′)O(t′) = −dλ(t)

dt
= MTLT (t, t′)∇x(t′)O(t′), (4.33)

to reveal that ∂
∂t

LT (t, t′) = MTLT (t, t′).
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Integration of (4.33) then gives

λ(t) = LT (t, t′)∇x(t′)O(t′). (4.34)

Since the resolvent L is a linear operator, all observations can be combined by
adding up the corresponding equations (4.34), which demonstrates the prepo-
sition for t = t0.

The computational procedure to calculate the gradient∇x(t0)J o is first to in-
tegrate ‘forward in time’ the ‘forward’ model M by equation (4.29), followed by
an integration ‘backward in time’ of the adjoint (‘backward’) equation (4.32).
The forward integration provides the distance function value J o(x(t0)) and
intermediate values for retrieving the operators L̃T for the backward integra-
tion, while the backward integration gives the gradient ∇x(t0)J o. Both J o and
∇x(t0)J o values then enter the minimization routine.

Practical construction of adjoint code

A program line, which modifies a state variable xk+1
i at a model step k+ 1,

(which is not neccessarily time)

xk+1
i = f(xk1, · · · , xki , · · · , xkn)

has the tangent linear form

δxk+1
i =

∂f

∂xk1
δxk1 + · · ·+ ∂f

∂xki
δxki + · · ·+ ∂f

∂xkn
δxkn

A blown–up equivalent notation as ”transformation“ reads




δxk1
...
δxki

...
δxkn
δxk+1

i




=




1 0 · · · · · · 0 0
. . .

...

1
...

. . .
...

0 · · · · · · 0 1 0
∂f
∂xk1

· · · ∂f
∂xki

· · · ∂f
∂xkn

0







δxk1
...
δxki
...
δxkn
δxk+1

i




adjoint (transposition)




λxk1
...
λxki
...
λxkn
λxk+1

i




=




1 ∂f
∂xk1

0
. . .

...
... 1 ∂f

∂xki

0
. . .

...
... 1 ∂f

∂xkn

0 0 0 0







λxk1
...
λxki
...
λxkn
λxk+1

i
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Hence

λxk1 = λxk1 + ∂f
∂xk1

λxk+1
i

...
...

...

λxki = λxki + ∂f
∂xki

λxk+1
i

...
...

...

λxkn = λxkn + ∂f
∂xkn

λxk+1
i

λxk+1
i = 0

Example

∂c(t, x)

∂t
= κ

∂2c(t, x)

∂2x

Program line inside loop over i = 2, . . . , N − 1

ck+1
i = cki + γ(cki−1 − 2cki + cki+1),

where

γ :=
κ∆t

∆x2

The tangent linear form reads

δck+1
i = (1− 2γ)δcki + γδcki−1 + γδcki+1

equivalent notation as ”transformation“




δcki−1

δcki
δcki+1

δck+1
i


 =




1 0 0 0
0 1 0 0
0 0 1 0
γ 1− 2γ γ 0







δck1−1

δcki
δcki+1

δck+1
i




adjoint (transposition)




λcki−1

λcki
λcki+1

λck+1
i


 =




1 0 0 γ
0 1 0 1− 2γ
0 0 1 γ
0 0 0 0







λcki−1

λcki
λcki+1

λck+1
i




Hence, the code to be placed in the loop over i = N − 1, . . . , 2 reads

λcki−1 = λcki−1 + γλck+1
i

λcki = λcki + (1− 2γ)λck+1
i

λcki+1 = λcki+1 + γλck+1
i

λck+1
i = 0
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Practical check of correctness of adjoint code

Let F be a coded operator (=vector valued function), the tangent–linear
(TL) and adjoint (AJ) of which be under development. Test the correctness
of both the TL and AJ code!

y = F(x) F : Rn →Rm, z = D(y) D : Rm →R

δz = ∇yDF′δx = 〈(∇yD)T ,Hδx〉

= 〈HT (∇yD)T , δx〉 =
(

(F′)
T

(∇yD)T
)T

δx

Application of H and HT means running the TL and AJ code, respec-
tively. With suitably selected input ∂D

∂yi
= (0, . . . , 0, 1, 0, . . . , 0)T and δxi :=

(0, . . . , 0, 1, 0, . . . , xn)T the ith row of H can be compared with the ith col-
umn of HT . Further, the TL code linearized at input x be approximated by
limδxi→0

1
|δxi|H((x + δxi)− x), where δxi = (0, . . . , 0, δxi, 0, . . . , xn)T .

Ensembe Transform Kalman Filter

Ensemble Kalman Filter

This section follows Hamill, Th., Ensemble nased atmospheric data assimi-
lation”’ in Palmer, T. and Hagedorn, R., eds., 2006.

ensemble matrix composed by ensemble members

Xb := (xb1, . . . ,x
b
m) (4.35)

ensemble mean

x̄b :=
1

m

m∑

i=1

xbi (4.36)

The perturbation of the ith member is x’bi := xbi − x̄b. The matrix of the
ensemble perturbations then reads

X’b := (x’b1, . . . ,x’bm) (4.37)

Let P̃b denote the ensemble estimate of the forecast error covariance matrix
Pb. This is then calculated by

P̃b =
1

m− 1
X′bX′bT (4.38)

The question how to generate Xb has not been considered so far. Several
methods are available: Optimal perturbations are used for the ensemble trans-
formed Kalman filter (EnTKF) (Bishop et al., 2001). Another option is to
generate m perturbed observations. A stochastic update algorithm reads

xai = xbi + Ki+1(yi −H(xbi), (4.39)
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we generate m sets of ”‘perturbed observations”’

yi = y + y’i, i = 1, . . . , m, (4.40)

where y’i ∝ N(0,R).

The elements of the Kalman gain matrix can then be calculated as follows

H(xb) :=
1

m

m∑

i=1

H(xbi) (4.41)

P̃bHT :=
1

m− 1

m∑

i=1

(xbi − x̄b)(H(xbi)−H(xb))T (4.42)

and

HP̃bHT :=
1

m− 1

m∑

i=1

(H(xbi)−H(xb))(H(xbi)−H(xb))T (4.43)

We obtain for the analysis mean

x̄a(ti+1) = x̄b(ti+1) + Ki+1(y −H(x̄bi), (4.44)

and for the individual perturbations

x′
a
(t+1) = x′

b
(t+1) + Kt+1H(x′

b
i) (4.45)

Processing of an ensemble Kalman filter

Sequence for an ensemble square root Kalman filter (EnSqRF) with serial
processing

1. construct an ensemble of initial values

2. integrate all ensemble members forward in time until the next observation
time (4.8)

3. perform update step

(a) add a random model error η̆ to the forecast x̆bi,(t+1) = xbi,(t+1) + η̆

for all available observations at time (t+ 1)

(b) determine the forecast mean x̄b by (4.36) and the matrix of ensemble
perturbations X′b by (4.37),

(c) determine (4.42) and (4.43)

(d) determine (4.23)

(e) calculate

4. Add the updated mean and the perturbations together to form the anal-
ysis ensemble

5. Go to step 2



CHAPTER 5

The Initialisation Problem

So far we have treated two information sources for data assimilation: ob-
servations and a priori information like forecasts, which provide background
knowledge. Despite the fact that this set of information provides an overde-
termined, (yet ill–posed) problem, it is still insufficient for the inference of
initial values for the integration of numerical forecast models. Why is this
the case? Theoretical meteorology teaches the solutions of the primitive equa-
tions, which is only amenable to numerical techniques. Upon simlification as
far as shallow water equations on a sphere, Rossby (or rotational) modes are
a family of solutions, which are well known to sustain the general flow pat-
tern in nature. In addition, gravity modes figure as a further set of solutions.
In a multilevel shallow water model, internal gravity modes are an additional
family of solutions. In the case of non–hydrostatic models, sound waves are
yet another set of solutions. While these gravity modes can be observed, they
are neither relevant for weather, nor of such high amplitudes that they can be
directly observed in the troposphere in the undisturbed atmosphere or ocean.
(In the middle and upper atmosphere conditions are different). Rare occasions,
in which gravity waves are observed, include volcano erutions, and tsunamis
and seiches in oceans, seas and lakes. In most cases, atmsopheric dynamics are
captured by slow modes like Rossby waves, and not by fast modes, like gravity
waves. However, our data assimilation algorithms so far treated here do not
account of the clear predominance of slow modes, as there are no constraints
imposed to suppress the fast ones.

In the case of hydrostatic models, procedures were introduced to suppress
high frequency waves, assuming a cut–off frequency as acceptable limit. Tech-
niques used so far, were first the normal mode initialisation, later the non–
linear normal mode initialisation. With the advent of 4D–dimensional vari-
ational data assimilation, high frequency waves were inherently hampered to
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survive until the occurence of an observation, and the initialisation problem is
mitigated. Therefore these techniques are not included in this lecture. How-
ever the initialisation problem prevails for non-hydrostatic models. An efficient
technique is digital filtering, introduced by Lynch and Huang (1992).

Digital filtering

We consider a function of time f(t), composed of low and high frequency
components. The implementation of alow–passfiltes includes:

1. calculate the Fourier transform F (ω) of f(t)

2. set the high frequency components = 0,

H(ω) :=

(
1, if|ω| ≤ 2|ωc|
0, if|ω| > |ωc| (5.1)

3. retrieve the low pass filter function by inversion.

Let h(t) = sin(ωct)/(πt) be the inverse Fourier transform of H(ω). Then the
three steps are equivalent og the convolution of f(t) with h(t). Digression on
convolution

Convolution theorem: The Fourier transform F (f ∗ g) of a convolution
product of two functions (f ∗ g) (x) =

∫∞
−infty f(y)g(x− y)dy equals the prod-

uct of the two Fourier transform of its factors F (f) = F (y),F (g) = G(y)
times

√
2π

1√
(2π)

∫ ∞

−∞
(f ∗ g) (x) exp(ixy)dx =

√
(2π)F (y) ·G(y) (5.2)

To filter f(t) we have

f ∗(t) = (h ∗ f)(t) =

∫ ∞

−∞
h(τ)f(t− τ)dτ. (5.3)

Given a time series {fn} := {. . . , f−2, f−1, f0, f1, f2, . . .} at discrete moments
tn = n∆t, the shortest period which can be identified is τN = 2∆t, which
corresponds to the Nyquist frequency ωN = π/∆t. We can find the Fourier
transform

F (θ) =
∞∑

n=−∞
fn exp(−inθ) (5.4)

The Fourier transform of H(θ) =
∑∞

n=−∞ hn exp(−inθ) is

hn =
1

2π

∫ π

−π
H(θ) exp(inθ)dθ (5.5)
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The coefficients are

hn =
sinnθc
nπ

. (5.6)

With {f ∗n} denoting the interesting low frequency part of {fn},

H(θ) · F (θ) =

∞∑

n=−∞
f ∗n exp(−inθ) (5.7)

The convolution theorem implies that H(θ) · F (θ) is the convolution of {hn}
with {fn}

f ∗n = (h ∗ f)n =
∞∑

n=−∞
hkfn−k. (5.8)

An approximation to the low frequency part reads

f ∗n =
N∑

k=−N
hkfn−k (5.9)

To avoid Gibbs’ oscillations, filter windows are introduced, like Dolph-
Tchebychef or Lanczos window

wn =
sin (nπ/(N + 1))

nπ/(N + 1)
(5.10)

Transfer functions T (θ) of a filter are functions, which act as filter for pure
sinusoidal waves upon multiplication, that is, for fn = exp(inθ) we have f ∗n =
T (θ) · fn

T (θ) =
N∑

k=−N
hk exp(−ikθ) =

(
h0 + 2

N∑

k=1

hk cos(kθ)

)
(5.11)

In general we find formulations like equation (5.9) equivalent to non–
rekursive digital filters

y∗n =
N∑

k=−N
akxn−k (5.12)

More elaborate froms are rekursive digital filters

y∗n =

N∑

k=0

akxn−k +

M∑

k=0

bkyn−k (5.13)

Application for initialisation

f ∗F (0) = 1/2h0f0 +

N∑

n=1

h−nfn (5.14)
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hindcast

f ∗B(0) = 1/2h0f0 +
−N∑

n=−1

h−nfn (5.15)

Summation of both sums to find

f ∗(0) = f ∗F (0) + f ∗B(0) (5.16)

Filter coefficients

hn =
sin (nπ/(N + 1))

nπ/(N + 1)

{
sin(nθc)

nπ

}
(5.17)

References
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