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Phase diagrams of binary fluid mixtures have been calculated from the Carnahan—Starling-
Redlich-K wong equation of state in connection with standard quadratic mixing rules. The
phase diagrams were classified according to the system of van Konynenburg and Scott and
then used to construct global phase diagrams showing the extent of the various phase diagram
classes in the space of the parameters of the equation of state. For molecules of equal size, the
global phase diagram is rather similar to that of the Redlich-Kwong or the van der Waals
equation. For molecules of different sizes, however, a new tricritical line appears. Such a
behavior is observed for cubic equations of state only if nonadditive covolumes are assumed.
Along this new tricritical line, some unusual phase diagrams involving four-phase states and
high-density instabilities can be found. The influence of molecular size ratios on the global
phase diagrams and the relationship of the equation of state of this work to the ternary
symmetric lattice gas and the van der Waals lattice gas are discussed.

I. INTRODUCTION

During the previous years, the topology of fluid phase
diagrams has received increasing scientific interest. While
the work of van Konynenburg and Scott'? as well as the
work of Furman et al.* certainly explained the experimen-
tally observed phase equilibrium types and seemed to indi-
cate that—at least for nonpolar binary mixtures—the set of
possible fluid phase diagram classes was completely known,
recent work has shown that apparently not all possibilities
had been exhausted. The prediction of class VI behavior*?
(experimentally observed so far only in strongly polar mix-
tures) as well as the “discovery” of four-phase states in bina-
ry mixtures® proved that the present understanding of fluid
phase diagram classes was not complete. It must be noted,
however, that most of the not too numerous systematic in-
vestigations of fluid phase diagram topology which had been
carried out in the past were concerned mostly with cubic
equations of state (e.g., the van der Waals equation® and the
Redlich-Kwong equation® ), or models that are analogous
to cubic equations (e.g., the van der Waals lattice gas® and
the symmetric ternary lattice gas’ ). A survey of the litera-
ture on fluid phase diagram classification had been given in a
previous publication®; most of the work on noncubic equa-
tions of state published until now is concerned with a rather
narrow range of molecular parameters.*!! In order to gain
some insight into the behavior of noncubic equations of state
in phase equilibrium calculations, we have extended our pre-
vious work towards the Carnahan—Starling-Redlich-
Kwong equation.'? This equation is one of the simplest pos-
sible noncubic equations, but yet useful also for quantitative
calculations.

Il. EQUATION OF STATE AND MIXING RULES

The Carnahan-Starling-Redlich—-Kwong equation
(CSRK) is a combination of a hard sphere repulsion term
and a Redlich-Kwong attraction term'?
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The reduced density p is calculated from the volume and the
van der Waals covolume parameter b. This covolume pa-
rameter as well as the attraction parameter of the equation of
state are given by quadratic mixing rules

a=xia,, +2x,x,4a,, + x3ay, (2)
b=x%bn +2x,x, by, + x3by,. (3)

In order to reduce the number of degrees of freedom in our
investigation, we define four dimensionless parameter ratios

d,, —d
;= 22 1 , (4)
dy, +dy
l=d22_2d12 +dl1 , (5)
d22 + dll
b,, — b
by + by,
b,, —2b,, + b
1’ — 22 12 11 . (7)
b22 + bll
The d,, are cohesive energy densities defined by
dy =T%(by/b;by). (8)

For real molecules, the interaction parameters &, 4, &,
and 7 are not entirely independent of each other, but subject
to certain restrictions (combining rules). The following
combining rules for the binary interaction parameters (the
so-called Berthelot-Lorentz rules) are relatively crude ap-
proximations and usually insufficient for the quantitative
prediction of phase equilibria, but nevertheless large devia-
tions from these rules are quite unlikely
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QG s €)]
by zi(bii + by ). (10)
Expressed with relative parameters, these equations become
A=1—[(A=m¥YQ-EH]V0 =D, (11
7=0. (12)
For the phase diagram calculations with the CSRK
equation, we have always used 77 = 0, hence the mixing rule
for b becomes a linear function of composition.
For the calculation of phase diagrams, it is necessary to
know the Gibbs or the Helmholtz energy; the latter can be

obtained from the equation of state by integration with re-
spect to volume

A, =x A7 +x,45 +RT[x, Inx, +x,Inx,

2
—1In Y +4p—3p ]— 2 ln(1+i).
vy (a-pl T Ve
(13)
A ;* denote intrinsic Helmholtz energies of the pure compo-
nents in the perfect gas state (¥ ,},T). The Gibbs energy is
then given by G,, =4,, + PV,,.

A =

I1l. BOUNDARIES BETWEEN PHASE DIAGRAM
CLASSES

The various phase diagram classes and the P-T projec-
tions of typical phase diagrams have been described in the
previous publication. For the reader’s convenience, we list
the mathematical conditions of the most important
boundary states between these classes, namely:

(1) Tricritical states (a three-phase line shrinks to zero
length)

GZx = G3x = G4x = GS:: =0. (14)
G, is a shorthand notation for G, = (9%G,,/3x})p .
Phase diagrams with tricritical states form the boundaries
between classes I1 and IV, I and V, or III and IV*.

(2) Double critical endpoints (a critical line touches a
three-phase line)

§x=G§x=OY I‘f=l“la’ i=1’21

S5 Sp =S5 — (% —xD)SS
Ve Va—Va— G5 —x)Vs
Here ¢ denotes the critical phase and a the auxiliary noncriti-
cal phase. Sy, and ¥, are defined in analogy to G,,. Phase
diagrams containing double critical endpoints form the

boundaries between classes III and IV, or II and IV*.
(3) Zero-temperature endpoints

Gy =G, =0 at PT-0. (16)

Phase diagrams containing these points form the boundaries
between classes I and II, or III and V. Equation (16) de-
pends on the attractive part of the equation of state only;
hence the results for the CSRK equation of state are the same
as for the original Redlich-Kwong equation.®

(4) Azeotropic limits.

The condition of azeotropy is

(15)

ul=ups i=12, x}=xt 17)

For equal-sized molecules, this condition depends on the
mixing rule of the attraction parameter only; hence the result
is the same as for the Redlich-Kwong equation or the van
der Waals equation

az ay — a4y

X (18)
l ay —2a; +ay

The limits of azeotropy, which are specified by x{*-0 or
x%- 1, hence correspond to A = + £.

(5) Critical azeotropic endpoints (coincidence of a
critical endpoint and a critical azeotrope)

i=12. (19)

Phase diagrams containing these points form the boundary
between the azeotropic class III (1II-4) and the heteroazeo-
tropic class I1I-H.

(In the publication on the phase behavior of the Red-
lich-Kwong equation, the equation of the azeotropic com-
position (20)° contains a wrong subscript [cf. Eq. (18)].
With the correct equation, the critical azeotropic line of the
Redlich-Kwong global phase diagram does not end on a
tricritical line, but extends into the shield region as shown in
Fig. 1)

y=Pi=P5y =0, pi=pi

IV. RESULTS FOR THE CSRK EQUATION

For molecules of equal size, the global phase diagram of
the CSRK equation (Fig. 1) is very similar to that of the van
der Waals or Redlich-Kwong equation of state. Its promi-
nent feature is a set of three tricritical lines, of which two are
symmetrical. The third tricritical line coincides with the 4
axis. The region around the apparent intersection point (in-
tersection only in the {-A projection), the so-called shield
region, contains domains of rather complicated phase dia-
gram classes that have been discussed elsewhere.>* Points
where a boundary line terminates for physical reasons (e.g.,

-0.8 -06-04-02 0 02 04 06 08

FIG. 1. A global phase diagram of the CSRK equation of state for molecules
of equal size (£ = 0, n = 0)—, tricritical line; - - -, its metastable part; - - —,
0 K endpoint curve; -- - -, azeotropic boundary; ---, combining rule
(11);—, double or azeotropic critical endpoint curve; O, termination point.
Note that the symmetric tricritical line coincides with the ordinate.
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pressure becoming zero) have been marked in the diagram.
The only topological difference to the global phase diagram
of the Redlich-K wong equation is the behavior of the double
critical endpoint line. For cubic equations of state, this line
extends into the shield region and intersects the tricritical
line in a so-called van Laar point, whereas for the CSRK
equation, the double critical endpoint line becomes metasta-
ble above A =~ 0.04; hence no van Laar point and consequent-
ly no domain IV* exist in this diagram. Where the double
critical endpoint line is stable, it is so close to the tricritical
line that it is almost indistinguishable from it in the global
phase diagrams; the domains of class IV are very small.

Even at a relatively small size ratio £ = 0.2, however,
departures from this topology are observed (Fig. 2). At the
left- and the right-hand sides of the kite-shaped figure con-
taining domains I and I1, new tricritical lines appear. Similar
behavior is known for the Redlich-K wong equation of state,
but only for larger £ values, and only for negative ¢ values;
the tricritical line at positive £ values has not been observed
for cubic equations of state before.

In the phase diagrams of the classes I and V, an addi-
tional critical line has been observed at extremely high pres-
sures. This line is a boundary of a high-pressure liquid-liquid
immiscibility which extends over a wide temperature range
(often beyond the critical temperatures of the less-volatile
component). Phase diagram classes with this high-pressure
immiscibility have been marked with a superscript “A.”

The curve with the label “P” on the left-hand side of the
global phase diagrams represents states which fulfill the cri-
terion for a double critical endpoint, but have a different
topology. Instead of merely touching a three-phase line, a
critical line intersects this line and the intersection point is an
inflection point on the critical line. The P line is therefore not
a boundary line between different phase diagram classes, but
it marks a domain of phase diagrams where the liquid-liquid
critical lines have inflection points. The curvature along
these critical lines is not large enough to create maxima and

-0.8 -0.6 -0.4 -0.2 (C) 02 04 06 08

FIG. 2. A global phase diagram of the CSRK equation of state for size ratios
& = 0.2, . =0. For an explanation of symbols, see Fig. 1.

minima, but it turns out that other noncubic equations of
state exist where such extrema are formed. This would give
rise to phase diagram classes VI and VIL.*

In Fig. 2, the “old” tricritical line, which is also present
for equal-sized molecules, runs from the shield region down
towards negative A values; the “new” tricritical line is sepa-
rate from this line. At still larger size ratios, however, the
new tricritical line runs towards the shield region, whereas
the low-A branch of the old tricritical line is now separate
(Fig. 3). This change in topology is shown by Fig. 4 in
greater detail. On increasing the size ratio &, the new tricriti-
cal line moves towards the old one, develops a cusp (the
section between cusp and endpoint is unstable), and finally
switches connections with the old tricritical line. The transi-
tion state is a tetracritical point and its thermodynamic con-
ditions are

G, =0, k=2,.T. (20)
The coordinates of the tetracritical point are
£=0.2552, =0.0, {=0.06507,
21n

A= —003798, x, =0.8282.

V. COMPARISON WITH LATTICE-GAS MODELS

A binary fluid mixture obeying the van der Waals equa-
tion of state has a Helmholtz energy as follows:
AV =x, 4" +x,45 +RT
x(x, Inx, +x, Inx, —In Vm _b)——i.
| 24 V.,
(22)

Asin Eq. (13), the superscript *“ + ” denotes properties of
the thermodynamic reference state.

In lattice-gas theories of binary fluids, volume varia-
tions are modeled by introducing vacant sites (“holes”) as a
third species. There are now three lattice site fractions

1] o

-0.8 -0.6 -0.4 -0.2 g 02 04 06 08

FIG. 3. A global phase diagram of the CSRK equation of state for size ratios
& = 0.3, = 0. For an expianation of symbols, see Fig. 1.
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FIG. 4. A tetracritical transition for CSRK mixtures caused by increasing
size ratios £. For an explanation of symbols, see Fig. 1; the tetracritical point
is marked by .

b
pi=2 =12,
Vo (23)
Yo=1-=y _y2=1—i-
| 4

m
With these new concentration measures, the reduced Helm-
holtz energy density can be written as

Avdwb 2 a
praw _An (_____) In
RTV, =2\ &7 &) THn
+¥, 1ny2+(yo—1)lnyo+(yo—1)
b
z zylyk(zalk akk)'
Vm i=0k<i
(24)

The parameters 4 ;+ and a,, which denote energy interac-
tions of the holes, are of course zero.

In the case of equal-sized molecules with additive co-
volumes (£ = 0, 7 = 0), the mixture covolume is a constant,
hence all terms containing reference properties are linear
functions of y, and do not have any influence on the phase
equilibria. The remaining nonlinear terms correspond to the
terms of the van der Waals lattice gas®

FWi—yp Iny, +y,Inpy, + (5o — ) Iny,

2
+ 2 z YiViWik-

i=0k<i

(25)

The corresponding equation for the ternary symmetric
lattice gas is’

F¥" =y Iny, +y,Iny, +y, Iny,

+ E Z YiViWik-

i=0 k<i

It is remarkable that the tricritical lines of the ternary
symmetric lattice gas, which emerge from the shield region,
pass through a tetracritical point and bifurcate. In all the van
der Waals models (van der Waals lattice gas, van der Waals
fluid, Redlich-Kwong fluid, and CSRK fluid), this tetra-
critical point does not occur (for equal-sized molecules),
and of the two possible branches of the tricritical line, only
the one running towards lower A values is observed. This
difference in behavior is attributed to the “loss of symmetry”
caused by the transition from the entropy contribution
¥ Iny, in Eq. (26) to (y, — 1) In y, in Eq. (25)."

In order to discuss the influence of size variations, it is
advantageous to refer all reduced densities to a fixed co-
volume parameter, e.g., b,,,

2

(26)

2
z X Xeby = by + (x4, +x,4,)

=1 K=1
— X%, (A +4,)
with A, =b,; — by, (27)

With this notation, the reduced densities can be expressed in
terms of concentration-independent covolumes

b,
n=1-yr—y.

It is now possible to discuss three different cases.

i=12,
(28)

A. van der Waals fluid £§5£0, n=0
In this case, the covolume differences are linked by

A, = — A, and the reduced densities can be expressed as
A (x; —x,)
yy= yy[l + _l_;_]
b12
=yH1+£E(x —x;)], i=12 29)
With the abbreviation
€=£(x; —x;), (30)

Eq. (24) can be transformed into

£ S (A )
n n
P buRT » yfinyy

+ 0 —Dmlnys+ (2

m

2
+3 St + 08 -2 6D
i=0k<i Yo
This expression differs from Eq. (24) by the last term only,

which can be expressed as
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1—-(1+e(1—y3)
(y‘—l)ln——(y*—l)l
v »

=(yg_1)1n[1+ﬁ‘_“]
(1)
g - 1)%
- (1]

This additional contribution to F*¢¥ affects the entropic
contribution of the hole species

~eln’ 2. (32)

Ot —DInys—~(&—1+€elny) Inys -y inys.
Nt s’ Nt ..’ ———
vdW fluid, const. b symmetric

33)
AsIn y? is always negative, the effect of this additional term
depends on the sign of e. This property is not a constant, but
a function of composition, but as any new tetracritical point
must lie on one of the tricritical lines, it is possible to restrict
the discussion to the range of mole fractions that occur along
the tricritical line. For positive values of & (species 2 larger
than species 1) two cases must be distinguished:

&> 0—the tricritical mode fraction in the vicinity of the
¢ axis and below is above 0.8; hence € is positive. The addi-
tional term moves the van der Waals model away from the
symmetric lattice gas model. Additional tricritical lines are
suppressed.

¢ < 0—the tricritical mole fraction in the vicinity of the
¢ axis and below is below 0.2; hence € is negative. The addi-
tional term moves the van der Waals model fowards the sym-
metric lattice gas model. Additional tricritical lines are made
possible. '

The argumentation is not quite rigorous, because the
additional term depends on composition and therefore leads
to further contributions to higher derivatives of the Gibbs
energy. Nevertheless, it is made plausible why the additional
tricritical lines can appear and why this takes place for nega-
tive values of § only.

vdW fluid, variable b

B. van der Waals fluid §=0, n#0

In this case, A, = + A,, hence the reduced densities
can be written as

yi=yr1+ (A, /b)) (x} +x§)]

=yr[1+ 2903 +x3)]. (34)
Evidently, this case can be reduced to the previous case by
redefining

€=2n(x3 +x3). (35)

As the term in parentheses is always positive, only the sign of
7 determines the possibility of additional tricritical lines.
The existence of tetracritical points and the branching of
tricritical lines is possible for negative values of 7 only, but if
it occurs, it can be found for ¢ > 0 as well as for { <O0.

C. Carnahan-Starling-van der Waais fluid ££0, n=0

The repulsive term of the van der Waals equation of
state is given by

v,
Zg ==
V,—b 1—4p
where p is defined as in Eq. (1). This can be rewritten with
reduced densities related to b,, by means of Eqs. (29) and
(30)

(36)

Zuw =1 4 ML+ Op* 1
B ETTERyT o7

On the other hand, it is possible to expand the Carna-
han-Starling hard-sphere equation around the van der
Waals repulsion function

ZCS_1+4P 20
(1-p)°
_@_( 2= 3)
1+ 2p 2p 1p>-- ).

(38)
Setting p = (1 + € )p* in this equation and equating Z <
= Z ¥ leads to

rep

1+€
U+ e[1=Pp*(1+€) —Yp¥(1 + €V — ]
T 161+ €P—220%(1 + €)Y — '
(39)
The evaluation of this expression to first order yields
ex€ —p*(1+€)+- . (40)

The leading additional term in this equation is always nega-
tive, regardless of the sign of €'. Switching from the van der
Waals to the Carnahan-Starling repulsion function is there-
fore equivalent to using more negative € in the perturbed van
der Waals lattice-gas model [Eq. (31)] and this again im-
plies a shift towards the symmetric lattice-gas model [Eq.
(26) ]. This explains the appearing of new tricritical lines on
both sides of the global phase diagram.
Equation (40) can also be written as

e~€ —3p*(1 +€)2(x} +x}) +Pp*(1 +€)°

XX — X))+ . (41)

Comparison with Eq. (35) shows that the Carnahan-Star-
ling hard-sphere equation with 77 = 0 behaves approximate-
ly like the van der Waals repulsion function with
7= —3p*(1 + €)? i.e., with binary covolume b,, whichis
larger than the arithmetic mean of the pure component co-
volumes.

The above considerations refer to the van der Waals
equation of state, or to related equations containing the van
der Waals attraction term, but it is possible to generalize the
results to the CSRK equation. The conditions of tricritical
states [Eq. (14)] do not contain derivatives of the Gibbs
energy with respect to temperature, hence the pattern of tri-
critical lines is not affected by the temperature dependence
of the attraction term.'* Furthermore, the substitution of
V2, the denominator of the van der Waals attraction term,
by ¥, (V,, + b) does not lead to large deviations in the den-
sity range considered; the global phase diagram of the Red-
lich-K wong equation of state is merely a distorted version of
the global phase diagram of the van der Waals equation.®
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VI. SYSTEMS WITH NONADDITIVE COVOLUMES

In the previous section, a new tricritical line has been
predicted for van der Waals type equations of state with non-
additive covolumes, which should occur for positive ¢
values. This has caused us to calculate the global phase dia-
gram for a symmetric Redlich-Kwong mixture with £ =0,
n= - 0.05.

Even with this small departure from covolume additi-
vity, the global phase diagram (Fig. 5) already shows a pat-
tern of tricritical lines similar to Fig. 3, thus confirming the
prediction.

Because of the new tricritical line, the boundary be-
tween classes III and V can no longer be a line of 0 K end-
points. In order to determine the true nature of the transition
from class III to V, we have calculated a series of phase
diagrams in the vicinity of this tricritical line. The results are
shown in Fig. 6 not only as P-T projections, but also—fol-
lowing a recommendation of Meijer et al.'*'®*—as y, — p,
density plots. The latter representation helps to understand
the connectivity of the critical lines. For this purpose, the
metastable and unstable portions of the critical lines are also
shown.

Inall P-T diagramsin Fig. 6, the critical line originating
at the critical point of component 1 covers a very small tem-
perature range, before it becomes metastable and—passing
through a cusp—unstable. In the projection, the critical end-
point on this critical line almost coincides with the pure fluid
critical point and its three-phase line is practically indistin-
guishable from the vapor pressure line. In the Meijer dia-
grams, this critical line runs from the pure fluid critical point
towards the lower right corner and practically coincides
with the diagram abscissa.

The new tricritical curve marks the transition from class
III to IV*. For a phase diagram on this boundary, the high-
pressure three-phase line has zero length and its endpoints
coincide, thus forming a tricritical point.

06F E
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FIG. 5. A global phase diagram of the Redlich-K wong equation of state for
molecules of equal size with nonadditive covolumes (§ =0, = — 0.05).
For an explanation of symbols, see Fig. 1. Note that the symmetric tricriti-
cal line coincides with the ordinate.

It must be noted that the connectivity of the critical lines
changes within class IV*. The transition state, where the two
cusps of the critical lines meet, is a mathematical double
point and as such is unstable. This changeover of critical line
branches would not be accessible to experiments.

The Meijer diagrams of the class IV* reveal that the
whole phase diagram contains three different critical lines.
This is unusual, because until now all common phase dia-
gram classes of binary fluid mixtures could be represented by
two different critical lines. (To the experimentalist, class IV
has three critical lines, but the calculation always shows that
two of them are joined by metastable or unstable sections
and hence must be counted as one line only.)

The phase diagrams of the symmetric ternary lattice gas
contain six unique critical points:

three stable critical points (corresponding to the pure
fluid critical points and the “jamming point” C,, at high
pressure). These points are found on the sides of the Meijer
triangle;

three unstable critical points (corresponding to 7= 0,
P = 0 or similar “impossible” limiting states). These points
are represented by the corners of the Meijer diagram.

As there are six points to choose from, it is possible to
construct up to three critical lines between them. The ap-
pearance of a third critical line for the binary fluid mixtures
studies in this work is further proof of our view that fluid
mixtures with £> 0 or 7 <0 are intermediates between the
van der Waals ternary lattice gas and the symmetric ternary
lattice gas. We note, however, that in the Meijer diagrams for
the CSRK equation, more than one critical line can end in a
corner, while another corner has no critical line.

If A is decreased further, the critical endpoints of the
liquid-liquid critical lines approach the liquid-liquid—gas
three-phase line. For a small range of A values, this leads to
the formation of four-phase states (class IV, ). The transi-
tion from class IV* to IV, is characterized by phase dia-
grams containing a critical phase coexisting with two non-
critical ones (BA, in the Griffiths nomenclature’ ). For still
lower A values, class IV occurs. In contrast to the “usual”
class IV, however, the high-pressure critical line is not an
extension of the critical line originating at the critical point
of component 2. Furthermore, it does not run towards the
jamming point any more, but seems to form a loop in the
Meijer diagram. It is possible for this distorted class IV to
have the three-phase lines share the same temperature range.

A typical T — x, phase diagram for this case is shown
schematically in Fig. 7. This diagram also applies to phase
diagrams of class IV, slightly above the four-phase state, if
the lower critical endpoint (on the critical line originating at
the critical point of the less volatile compound) has a lower
pressure than the four-phase state. Otherwise, three three-
phase lines run from the four-phase point upwards and the
resulting isobaric phase diagram is represented schematical-
ly by Fig. 8. A remarkable feature of this phase diagram is a
homogeneous domain (labeled ““,”’) in the midst of the two-
phase regions.

Finally, the phase behavior looks like class V. However,
the liquid-liquid immiscibility at extremely high pressures
(> 5 GPa) persists. This is a natural consequence of having
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FIG. 7. A schematic isobaric phase diagram for a “‘reversed” class IV (cf.
Fig. 6, A = — 0.145) in the pressure range where two three-phase lines oc-
cur, or for class IV, (cf. Fig. 6, A = — 0.132) at a pressure slightly above
the four-phase state.

a negative 7. The mixture covolume is larger than the arith-
metic mean of the pure component covolumes and therefore
a sufficiently high pressure will always enforce demixing.
Since the CSRK equation shows similar phase behavior as
the Redlich—-K wong equation with negative 7, this explains
the high-pressure immiscibility mentioned in Fig. 2.

For still more negative 7 values, the high pressure im-
miscibility would extend to lower pressures and perhaps in-
teract with the usual liquid—gas phase equilibria, thus creat-
ing new phase diagram classes. It is possible that this is the
reason for some unusual phase diagrams obtained with the
simplified perturbed hard chain theory (SPHCT) equation,
which contains a modified Carnahan-Starling function.’

VII. DISCUSSION

In the previous sections, the interaction parameters £, 4,
£, and 7 have been treated as independent variables. Since
with real molecules, deviations from the combining rules (9)
and (10) of more than 20% would be rather exceptional, it
has been concluded!” that it will not be possible to find a real
system with a sufficiently high A value to belong to the shield
region. It must be noted, however, that the parameter range
into which the shield region falls depends on the equation of
state. For equal-sized molecules, the A parameter for the
center of the shield region is approximately 0.44 for the van
der Waals equation of state, 0.34 for the Redlich-Kwong
equation, and 0.29 for the CSRK equation. One might con-
clude that the more realistic the equation of state is, the low-
er the shield region will be. Therefore, the task of finding an
experimental binary system belonging to the shield region
classes IT*, ITI*, or I1I** might not be hopeless after all.

Another interesting, but rather speculative feature of
this work is the prediction of phase diagram classes with
four-phase states. Such states are predicted for mixtures hav-
ing either negative 7 parameters or large size ratios £. While
the global phase diagrams for the CSRK equation contain
two domains of phase diagram class IV, the cubic equations

T v

FIG. 8. An alternative schematic isobaric phase diagram for class IV, ata
pressure slightly above the four-phase state.

(with 77 = 0) have only one. This region occurs at very nega-
tive ¢ values and at values of the binary interaction pa-
rameter A, which are close to the abscissa. Such A values
would be far below the values calculated from the combining
rules (9) and (10), and hence might be considered unrealis-
tic.

There is, however, a case in which the Berthelot-Lor-
entz combining rules would be inappropriate. In a micro-
scopically heterogeneous fluid, the quadratic mixing rules
(2) and (3) would have to be replaced by linear ones. For
the energy parameter, this would be equivalent to replacing
the geometric mean in the combining rule by the arithmetic
mean and this would indeed lead to A =0. Therefore, an ap-
propriate binary system to show class IV, behavior should
meet the following requirements:

(1) its first component should have a high critical pres-
sure and a small molecular volume (e.g., water);

(2) its other component should have a low critical pres-
sure and a large molecular volume and either interact ex-
tremely favorably with the other component (e.g., a long-
chain polyether); or

(3) the mixture should form micelles.

An interesting candidate for class IV, behavior might be the
system (water + 3,6,9,12-tetraoxadocosanol). Its second
component is a nonionic surfactant (“C,,E,”"). In this bina-
ry system, a three-phase state has been observed experimen-
tally, where three liquid phases coexist.'® The experiments
had been carried out at ambient or slightly elevated pressure;
lowering the pressure towards the vapor pressure of water
would certainly have brought about a four-phase state
(three liquid + one vapor phase). Until now, only a small
part of the phase diagram of this binary mixture is known
and it is not entirely clear to which phase diagram class it
belongs, but at least the practical existence of fluid four-
phase states is made certain. Furthermore, these results indi-
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cate that equations of state can at least describe qualitatively
the phase behavior of oil-surfactant-water mixtures.
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