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Abstract 

 

A new method is reported for developing accurate two-body interatomic potentials from existing ab 

initio data. The method avoids the computational complexity of alternative methods without sacrificing 

accuracy. Two-body potentials are developed for He, Ne, Ar, Kr and Xe, which accurately reproduce 

the potential energy at all inter-atomic separations. Monte Carlo simulations of the pressure, radial 

distribution function and isochoric heat capacity using the simplified potential indicate that the results 

are in very close, and sometimes almost indistinguishable, agreement with more complicated current 

state-of-the-art two-body potentials.   
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I. INTRODUCTION  

The macroscopic properties of materials, irrespective of whether in the liquid, gas or solid state, 

are ultimately determined by the nature of interactions between their constituent atoms or molecules.1 

In most instances, the dominant contribution from such interatomic or intermolecular interactions can 

be attributed to the sum of interactions between all of the different pairs of atoms or molecules, i.e. 

two-body interactions. Although it is well-documented2-4 that the addition of three– or more-body 

interactions are required for an accurate representation of the properties of materials, the dominance of 

two-body interactions means that understanding such interactions is of paramount importance. 

 Information regarding two-body interactions is accessible via experimental properties such as 

second virial coefficients or viscosities of dilute gases. From a theoretical perspective, two-body 

interactions can be evaluated via molecular simulation.5  Except for ‘on-the-fly’ simulation techniques 

such as the Car-Parrinello method,6 the latter approach requires the postulation of a two-body 

interatomic or intermolecular potential (u(r)) to determine either the energy or force of interaction 

between the particles at a given separation (r).   

The noble gases have been the focus of many investigations7-25 for two-body potentials. The 

earliest successful two-body potentials for Ar or Kr adopted a semi-empirical approach involving 

fitting a potential to two-body experimental data. An example of this approach is the Barker-Fisher-

Watts (BFW) potential,11 which has the following form 

 

u(r)
BFW


 A

i
i0

5

 R 1 i
e 1R 

C
n

  Rn
n6,8,10
 ,

                (1)

 

 

where R  r r
min

 and rmin defines the interatomic separation at which the potential has a minimum (). 

The potential involves the C6, C8 and C10 dispersion coefficients; the remaining terms were obtained by 
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fitting to experimental data. In contrast, more recent advances in computational chemistry26 have 

witnessed the development of two-body potentials from first principles or ab initio data.8, 13, 14, 27 The 

advent powerful quantum mechanical methods—particularly the CCSD(T) method—and the 

improvement of computers, pair potentials of increasing accuracy have been developed. The reader is 

referred to refs. 8, 13, 14 and 27  and publications cited therein. 

 In a series of publications,16-25 Jäger, Hellmann, Bich and Vogel (JHBV) have reported highly 

accurate two-body ab initio data for all the stable noble gases, which they used to obtain analytical two-

body potentials. A modified aug-cc-pV7Z basis set was used17 for He. Calculations for Ne, Ar and Kr 

used correlation-consistent basis sets21,22 involving polarized-valence sextuple-zeta contributions, 

which was further extended25 for Xe. 

  For He, the JHBV potential is based in part on the formula of Tang and Toennies.28 

 

                   (2) 

where 

f
2n

(x)  1- e-x xk

k!k0

2n

 .                (3) 

 

In Eq. (2), R = r/, which is the interatomic separation relative to the separation () at which u(r) = 0. 

The parameters A, a1, a2, a-1, a-2, b, d1, d2 and d3 where fitted to the ab initio data with f
2n

(x)  1. The 

C2n terms are the dispersion coefficients.  

There are some subtle variations for the different atoms but the general form for the JHBV 

potential for Ne, Ar, Kr and Xe is 
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        (4) 

 

where Rsr  is an atom-specific short range cut-off distance.  The second term is used to extend the 

JHBV potential to interatomic separations not covered by the ab initio data.  Comparison with Eq. (2) 

shows that accurately representing the properties of He necessitates an additional term that is not 

required for the remaining noble gases. 

 Although the JHBV potentials are highly accurate and arguably ‘state-of-the-art,’ they are 

computationally expensive and as such impractical for the evaluation of the properties of materials. The 

computational difficulty is largely caused by the adoption of the Tang and Toennies28 formula, which 

also forms the basis of alternative interatomic potentials such as the Nasrabad and Deiters8 Patkowski 

and Szalewicz15 potentials. The evaluation of the second term of Eq. (4) involves a nested summation 

involving Eq. (2). This alone imposes a considerable computational cost for the evaluation of energy, 

which is compounded further when a derivative is required to obtain either the virial or the force. The 

requirement for a substitute potential at small interatomic separations is also computationally 

undesirable. 

It is not advisable to omit the short-range potential. If neither parameter a−1 nor a−2 is positive, 

the uncorrected JBHV potential runs to negative-infinite values for R →0. The simulation ensemble of 

a Monte Carlo simulation using the uncorrected JBHV potential is likely to collapse to a state of 

infinite density. 

 The aim of this work was to develop alternative interatomic two-body potentials to accurately 

represent the ab initio data for noble gases at minimal computational cost at all interatomic separations. 
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A new method for the development of interatomic potentials is reported, which is in principle 

transferable to other cases. It results in a compact and mathematically simpler interatomic potential.  

 

II. THEORY 
 

A. Development of a new two-body potential 

The selection of the functional form of the new two-body potential was guided by the following 

considerations:  

1. A proper two-body or pair potential function u(r) intersects the abscissa exactly once at the 

distance (“collision diameter”) σ.  It is positive and monotonously decreasing for r < σ, and it is 

negative for r > σ; in the latter range it passes through a single minimum.   

2. At long distances, u(r) is dominated by dispersion interactions. Therefore it must monotonously 

converge against zero according to r−6.   

3. At short distances, u(r) is dominated by Pauli repulsion (orbital overlap). As discussed by 

Pathak and Thakkar30 as well as by Deiters and Neumaier,9 this repulsion can be described 

approximately by an exp(r)/r term.   

4. In particular, u(r) must approach +∞ for r → 0.   

 

Figure 1 shows the behavior of u(r) r6 (energy measured in K) as a function of distance. In accordance 

with the requirements listed above, this function exhibits a high (positive) maximum at short distances 

and a shallow (negative) minimum after the only intersection with the abscissa. It runs towards a 

constant negative value at large distances.  The diagram suggests a function containing a constant 

negative term, plus an exponential term with a small decrement for the attractive well, plus an exp(r)/r 

term with a large decrement for the repulsion zone. The resulting simplified ab initio atomic potential 

(SAAP) is   
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             (5)
 

 

with a0, a5  > 0 and a1…4 < 0. Helium, for which ab initio data at extremely small distances are 

available, requires one additional parameter in the repulsive exponential. The extended potential 

(SAAPx) then becomes  

 

         (6)

  
 

 

a6 < 0. Evidently, this pair potential can also be used for the other noble gases by setting a6 = 0.   

 

FIG 1.  Comparsion of the SAAP behavior for u(r) r6  (solid line) with ab initio data () for Ar. 
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The numerical values of the parameters of the various noble gases were determined by fitting 

uSAAP(r) or uSAAPx, respectively, to the ab initio noble gases data of Jäger, Hellmann, Bich and Vogel.16-

25 For argon, neon, and helium a weight function exp(−σ/r) was applied to enforce a better agreement in 

the regions of thermodynamic relevance.  

The parameters for the noble gases are summarised in Table I.  Figure 2 illustrates the values of 

the parameters with respect to the atomic number (Z).  In both Table I and Figure 2, the ai parameters 

are reduced with respect to  and .  It is apparent from Table I that there is relatively little variation in 

the reduced values of a1, a3, a4 and a5.  In contrast both a0 (Figure 2) and a2 (Figure 2) vary greatly with 

Z, which indicates their importance in capturing the different chemical nature of the atoms. We observe 

that the magnitudes of a0 and a2 parameters (Table I) are not consistent with the overall trend for the 

other noble gases, which may reflect uncertainties the nature of the parameter estimation as discussed 

above as well as strong correlations between the parameters. 

 

TABLE I.  Summary of the two-body SAAP and SAAPx parameters obtained in this work. 
 
 He (SAAPx) He Ne Ar Kr Xe
 
 /k (K) 10.92536561 11.00963377 42.36165080 143.4899372 201.0821392 280.1837503 

 (nm) 0.2639244581 0.2639781646 0.2759124561 0.3355134529 0.357999364 0.3901195551 

a0 /   24238.01564 81648.44026 211781.8544 65214.64725 60249.13228 44977.3164 

a1  -5.934943188 -9.829947619 -10.89769496 -9.452343340 -9.456080572 -9.121814449 

a2 /   -11.17928721 -6.482831445 -20.94225988 -19.42488828 -24.40996013 -29.63636182 

a3  -1.821078761 -0.5073208921 -2.317079421 -1.958381959 -2.182279261 -2.278991444 

a4 /   -0.7762283939 -0.4906026951 -1.854049559 -2.379111084 -1.959180470 -1.876430370 

a5 / 6  0.3703465767 0.9921472732 0.7454617542 1.051490962 0.874092399 0.8701531593 

a6 / 2  -3.210773756 0 0 0 0 0 
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FIG 2. The value of the reduced SAAP a0 () (LHS y-axis) and a5() (RHS y-axis) parameters as a 
function of atomic number. The lines through the data are for guidance only. 
 
 

Compared to the JHBV potential (Eq. (4)), the SAAP has two simple exponential terms, but 

more importantly, the need for the nested summation terms involving the dispersion coefficients has 

been eliminated. The SAAP needs only 6 or 7 parameters, whereas 14 parameters are required for Eq. 

(4). It is also valid at all interatomic separations and as such it does not require an alternative pair 

potential at small separations. 

 
 
B.     Simulation details 

Canonical (NVT) Monte Carlo (MC) simulations were performed for which the number of 

particles (N), volume (V) and temperature (T) were held constant. A system size of 1000 atoms was 

used and periodic boundary conditions were applied. Initial configurations were created by placing the 

atoms at random locations in a very large cubic simulation box, and then compressing this to the 
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desired volume. The cut-off radius was set to 4 and corresponding long-range corrections were 

evaluated numerically using Romberg’s method.30 The simulation ensembles were equilibrated for 

40,000 cycles (with a simulation cycle consisting of N attempted particle displacements); after that, 

statistical data were collected from 800,000 cycles (4 parallel threads of 200,000 cycles). The 

maximum displacement size was adjusted continually to achieve a 50% acceptance rate. The ensemble 

pressure was calculated using the virial theorem.5 The residual isochoric heat capacity (CVr) was 

obtained from fluctuations of the total potential energy (U) of the system,1,5 i.e., 

 

C
Vr


1

kT 2N
U 2  U

2




,     (7) 

 

where U is calculated by summing the all the distinct pairs of atoms interacting via the potential, and 

the angled brackets denote ensemble averages. The structure of the noble gases was investigated by 

calculating the RDF (g(r)) from the standard following formula1 

2
( ) ( ) ,

4 ( 1) i
i

V
g r n r r

N N
 

       (8) 

 

where n(r)∆r is the number of  atoms that exist in the region between r and r+∆r; here a channel width 

∆r of 0.01 nm was used. 

 
 
III. RESULTS AND DISCUSSION 
 
A. Potential energy curve for He 
 
 As described above in the development of the SAAP, He poses considerable challenges 

requiring an additional parameter resulting in the SAAPx. The difficulty has also been recognised in 
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other He potentials. Figure 4 compares ab initio data with SAAP and SAAPx calculations in the 

vicinity of the potential minimum. 

 

 

FIG 3. Comparison of the ab initio potential energy of He () with SAAP (solid line) and SAAPx 
(dashed line) calculations at interatomic separations close to the attractive well.  
 

 

Both potentials yield reasonably good agreement with the ab initio data, however the SAAPx slightly 

overestimates the potential energy in the vicinity of potential minimum.. 
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FIG. 4. Comparison of the ab initio potential energy of He () with SAAP (solid line) and SAAPx (red 
dashed line) calculations at interatomic separations in the repulsive region. Calculations with the 
Lennard-Jones potential (blue dashed line, /k = 6.03 K,  = 0.263 nm) are also included.  
 

 Interatomic separations that correspond to dominantly repulsive contributions to the potential 

energy are illustrated in Figure 4. The SAAP provides an accurate presentation of repulsion until r ≈ 

0.12 nm where after the SAAPx is required, because otherwise the repulsion would be too steep. Figure 

5 also includes a comparison with the 12-6 Mie potential (i.e., the Lennard-Jones potential), which 

greatly exaggerates repulsion starting from separations of r ≈ 0.12 nm.  

 

B. Potential energy curves of Ne, Ar, Kr and Xe 
 

 A comparison of the overall potential energy predicted by the SAAP with ab initio two-body 

data is given in Figure 5. 
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FIG. 5. Comparison of ab initio potential energies for Ne (), Ar (), Kr () and Xe () with SAAP 
calculations (solid lines). 
 

It is apparent from Figure 5 that the SAAP predicts the two-body potential energy of the remaining 

noble gas to a high degree of accuracy. The potential minimum, repulsive region and interactions 

occurring at large separations are all predicted accurately. This is also the case at small separations 

(Figure 6), which are often quite challenging to describe accurately. Figure 6 also illustrates a 

comparison with the Lennard-Jones potential, which starts becoming too repulsive even at modest 

separations of r ≈ 0.34 nm and r ≈ 0.38 nm for Kr and Xe, respectively.  
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FIG. 6. Comparison of ab initio potential energies for Kr () and Xe () at repulsive interatomic 
separations with SAAP calculations (solid lines). Calculations with the Lennard-Jones potential 
(corresponding dashed lines) for Kr (/k = 171.0 K,  = 0.360 nm) and Xe (/k = 217 K,  = 0.395 nm)  
are also included. 
 
 

It is apparent from the preceding analysis of the noble gases that the SAAP reproduces the ab 

initio potential energies to a high degree of accuracy. Nonetheless, the limited number of parameters 

used means that it is unrealistic to exactly match the quality of agreement with the multi-parameter 

JHBV potential, particularly at small interatomic separations.  The question is what effect does the 

relatively small differences between the SAAP and the JHBV potential have on predicted properties?  

To address this issue, we analysed predicted RDFs, p and CVr from molecular simulation. 

 
 
C. RDFs 
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 The RDFs of Ar at T = 130 K and both V = 28.5 cm3/mol and V = 500 cm3/mol are illustrated in 

Fig. 7.  These state points were chosen because Ar is in the homogeneous liquid and vapor phase, 

respectively. 

 

 

FIG. 7.  Comparison of RDFs obtained from the JHBV potential (solid line) for Ar with results 
obtained for the SAAP () in liquid (28. 5 cm3/mol) and vapor (500 cm3/mol) phases at T = 130 K. 
The RDFs for the vapor phase are shifted by + 1. 
 

It is apparent from Figure 7 that the results for the SAAP and JHBV potential are almost 

indistinguishable from each other, indicating that the SAAP potential faithfully reproduces the ab initio 

structure of the fluid in both vapor and liquid phases.   

 Having established the equivalence between the SAAP and JHBV potential, we compared the 

predictions of the SAAP with experimental RDFs. Such a comparison for Ar is illustrated in Fig. 8 for 

experimental data31,32 of a liquid state (ambient pressure, T = 85 K) close to the triple point and a dense 
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supercritical state (p = 87.7 MPa, T = 85 K). It is apparent from Fig. 8 that the SAAP accurately 

represents the RDFs at both these extreme conditions. 

 

 

FIG. 8. Comparison of experimental RDF data31,32 () at T = 85 (V = 28.27 cm3/mol) and 350 K (V = 
49 cm3/mol) with predictions from the SAAP (solid lines). The data for 350 K are shifted by +1. 
 

D.   p and  CVr 
 
 
 The values of both p and CVr predicted for Ar by the JHBV potential and the SAAP are 

illustrated in Fig. 9.  It is apparent from this comparison that CVr declines with increasing p.  The results 

obtained for p with the SAAP are almost indistinguishable from the JHBV potential values.  Good 

agreement is also observed for CVr, although the SAAP values are consistently slightly lower than those 

obtained for the JHBV potential. It should be noted that the SAAP was not fitted to the JHBV potential, 

but evaluated independently from ab initio data.  In the absence of ab initio p and CVr data, the relative 
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accuracy of the two potentials cannot be determined. We note that, as discussed elsewhere,33 obtaining 

CVr values from first principles are both difficult and prone to considerable uncertainties. 

 

 
FIG 9. Comparison of p (LHS y-axis) and CVr (RHS y-axis) for Ar predicted by the JHBV potential 
((p(), CVr ()), the SAAP (p(), CVr ()) and the Lennard-Jones potential (red and black dashed 
lines) for V = 28.5 cm3/mol. The corresponding experimental values34 (red and black solid lines) are 
also illustrated. At most values of T, the JHBV and SAAP results for p almost exactly coincide with 
each other. 
 
 
 Figure 9 also provides a comparison with both experimental data34 and calculations with the 

Lennard-Jones potential.  Both the SAAP and JHBV potential under-predict p, which can be expected 

because they are genuinely two-body potentials, whereas p has well-documented2,5 contributions from 

three- or more-body interactions. For reasons that are discussed below, the Lennard-Jones calculations 

over-predict p at T > 140 K. The SAAP and the JHBV potential both yield good agreement with 

experimental CVr data, whereas the Lennard-Jones potential under-predicts this property at most 

temperatures. This suggests that CVr for Ar is dominated by two-body interactions. 
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 A similar comparison for p and CVr predicted for the SAAP and JHBV potential and for Xe is 

given in Fig. 10. In common with Ar, p values obtained for the two potentials are in excellent 

agreement over the entire temperature range.  Comparison with experimental data indicates that the 

two-body potentials under-predict p. The calculations with the Lennard-Jones potential are in better 

agreement with experiment but straddle the data either side of 500 K.  

 
 

 
FIG 10. Comparison of p (LHS y-axis) and CVr (RHS y-axis) for Xe predicted by the JHBV potential 
((p(), CVr ()), the SAAP (p(), CVr ()) and the Lennard-Jones potential (red and black dashed 
lines) for V = 45 cm3/mol. The corresponding experimental values35 (red and black solid lines) are also 
illustrated. At most values of T, the JHBV and SAAP results for p almost exactly coincide with each 
other. 
 
 
 

The CVr values for both two-body potentials shown in Fig. 10 are also in close agreement. 

However, in contrast to the very good agreement at all values of T obtained for Ar, both the SAAP and 

the JHBV potential predict values of CVr for Xe that are noticeably higher than the experimental data.35 

Furthermore, unlike the Ar case, the Lennard-Jones calculations do not under-predict CVr. The 
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discrepancy with experiment can be at least partly attributed to the greater role of three-body and other 

multi-body interactions for the considerably larger Xe atom. Calculations for Kr (not illustrated in Fig. 

9) also overestimate CVr but the magnitude of the discrepancy is smaller than for Xe. This is consistent 

with the contribution of non-additive interatomic interactions being proportional to the atomic weight. 

It has been previously established33 that two-body interactions alone are inadequate for the prediction 

of the thermodynamic properties of either He or Ne, which require accounting for quantum effects. 

 

 

 

FIG 11.  Comparison of the dense fluid pvir behavior of Ar at T = 300 K predicted by the SAAP () 
and the Lennard-Jones potential () with experimental data34 (solid line). 

 

 It is apparent from the comparsion of the potential energy obtained form the SAAP illustrated in 

Fig. 6 that there is a considerable difference with the results obtained for the Lennard-Jones potential at 

small interatomic separations. Such interatomic separations are commonly encountered at high 

densities and we would expect the pressures to be considerably affected.  Fig. 11 compares the virial 
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pressure (pvir) by the SAAP and the Lennard-Jones potential for Ar at high densities (small volumes) at 

the supercritical temperature of 300 K. Slightly lowering the volume of the dense fluid results in a rapid 

increase in pvir, which quickly approaches and then exceeds 1 GPa.  However, it is apparent that pvir 

obtained from the SAAP is considerably less than the Lennard-Jones values and the difference between 

the two potentials widens with increasing density. The comparison with experimental data indicates 

that the excessive repulsion of the Lennard-Jones potential over-predicts the true pressure of dense 

fluids and solids. 

 
  

 
IV. CONCLUSIONS 
 

A new method is reported for developing accurate two-body interatomic potentials, which 

involves systematically accounting for the salient features of two-body interactions. Using this method, 

the ab initio potential energies of He, Ne, Ar, Kr and Xe can be accurately represented at all 

separations via a 6 or 7 parameter interatomic potential. The potential avoids the computational 

complexity of alternative procedures such as the use of the Tang-Toennies formula. Comparison with 

molecular simulation results indicates that the structures of vapor and liquid phases obtained from the 

simplified potential are almost indistinguishable from existing more complicated alternatives, 

providing very good agreement with experimental data. The two-body potential provides a realistic 

description of repulsion at small interatomic separations and good agreement with experiment for the 

isochoric heat capacities of Ar at liquid densities. 

 

ACKNOWLEDGEMENTS 

One of us (RJS) thanks the Alexander von Humboldt foundation for financially supporting his 

stay at the University of Cologne. The molecular simulation calculations were performed using the 

http://dx.doi.org/10.1063/1.5085420


 20

OzSTAR and CHEOPS supercomputing facilities at Swinburne University of Technology and Cologne 

University, respectively. 

 

References 

1. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids Vol. 1: Fundamentals (Clarendon 

Press, Oxford, 1984). 

2. G. Marcelli and R. J. Sadus, J. Chem. Phys., 111, 1533 (1999). 

3. M. Vlasiuk and R. J. Sadus, J. Chem. Phys. 146, 244504 (2017). 

4. M. Vlasiuk and R. J. Sadus, J. Chem. Phys. 147, 024505 (2017). 

5. R. J. Sadus, Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation 

(Elsevier, Amsterdam, 1999). 

6. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). 

7. K. Leonhard and U. K. Deiters, Mol. Phys., 98, 1603 (2000).  

8. A. E. Nasrabad, R. Laghaei and U. K. Deiters, J. Chem. Phys. 121, 6423 (2004). 

9. U. K. Deiters and A. Neumaier, J. Chem. Eng. Data 61, 2720 (2016). 

10. P. S. Vogt, R. Liapine, B. Kirchner, A. J. Dyson, H. Huber, G. Marcelli and R. J. Sadus, Phys. 

Chem. Chem. Phys., 3, 1297 (2001). 

11. J. A. Barker, R. A. Fischer and R. O. Watts, Mol. Phys. 21, 657 (1971). 

12. R. A. Aziz, J. Chem. Phys. 99, 4518 (1993). 

13. P. Slavíček, R. Kalus, P. Paška, I. Odvárková, P. Hobza and A. Malijevský, J. Chem. Phys. 119, 

2102 (2003). 

14. K. Patkowski, G. Murdachaew, C.-M. Fou and K. Szalewicz, Mol. Phys. 103, 2031 (2005). 

15. K. Patkowski and K. Szalewicz, J. Chem. Phys. 133, 094304 (2010). 

16. E. Bich, R. Hellmann and E. Vogel, Mol. Phys. 105, 3035 (2007). 

17. R. Hellmann, E. Bich and E. Vogel, Mol. Phys. 105, 3013 (2007). 

http://dx.doi.org/10.1063/1.5085420


 21

18. E. Bich, R. Hellmann and E. Vogel, Mol. Phys. 106, 813 (2008). 

19. E. Bich, R. Hellmann and E. Vogel, Mol. Phys. 106, 1107 (2008). 

20. R. Hellmann, E. Bich, and E. Vogel, Mol. Phys. 106, 133 (2008). 

21. B. Jäger, R. Hellmann, E. Bich and E. Vogel, Mol. Phys. 107, 2181 (2009). 

22. B. Jäger, R. Hellmann, E. Bich and E. Vogel, Mol. Phys. 18, 105 (2010). 

23. E. Vogel, B. Jäger, R. Hellmann and E. Bich, Mol. Phys. 108, 3335 (2010). 

24. B. Jäger, R. Hellmann, E. Bich and E. Vogel, J. Chem. Phys. 144, 114304 (2016). 

25. B. Jäger, R. Hellmann and E. Bich,  J. Chem. Phys. 147, 034304 (2017). 

26. U. K. Deiters, M. Hloucha and K. Leonhard, in Chemistry for the 21st Century: Chemical 

Thermodynamics, edited by T. M. Letcher (Blackwell Science, Oxford, 1999), p. 187. 

27. M. Venkatraj, Ch. Bratschi, H. Huber and R. J. Gdanitz, Fluid Phase Equilib. 218, 285 (2004). 

28. K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984). 

29. R. K. Pathak and A. J. Thakkar, J. Chem. Phys. 87, 2186 (1987). 

30. G. Jordan-Engeln and F. Reutter, Numerische Mathematik für Ingenieure (Bibliographisches 

Institut, Mannheim, 1985). 

31. J. L. Yarnell, M. J. Katz, R. G. Wenzel and S. H. Koenig, Phys. Rev. A. 7, 2130 (1973). 

32. T. Pfleiderer, I. Waldner, H. Bertagnolli, K. Tödheide, B. Kirchner, H. Huber and H. E. Fischer, 

J. Chem. Phys. 111, 2641 (1999). 

33. M. Vlasiuk, F. Frascoli and R. J. Sadus, J. Chem. Phys. 145, 104501 (2016). 

34. R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 (1989). 

35. O. Šifner and J. Klomfar, J. Phys. Chem. Ref. Data 23, 63 (1994). 

http://dx.doi.org/10.1063/1.5085420


 
 

 

Figure 1 

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

1
0
5
4
 u

(r
) 
r
6
 (

K
 m

6
)

r (nm)

http://dx.doi.org/10.1063/1.5085420


 
 

 

Figure 2 

0

5 x 10
4

1 x 10
5

1.5 x 10
5

2 x 10
5

2.5 x 10
5

-30

-25

-20

-15

-10

-5

10 20 30 40 50

a
0
/ε
σ

a
2
/ε

Z

http://dx.doi.org/10.1063/1.5085420


 

 
 

Figure 3 

-11.2

-10.8

-10.4

-10

-9.6

-9.2

-8.8

-8.4

-8

0.28 0.29 0.3 0.31 0.32

u
/k

 (
K
)

r (nm)

http://dx.doi.org/10.1063/1.5085420


 

 
 

Figure 4 

0

1

2

3

4

5

6

0.05 0.1 0.15 0.2 0.25 0.3

lo
g
1
0
(u

/k
 (
K
))

r (nm)

http://dx.doi.org/10.1063/1.5085420


 

 
 

Figure 5 

-300

-250

-200

-150

-100

-50

0

50

0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88

u
/k

 (
K
)

r (nm)

http://dx.doi.org/10.1063/1.5085420


 

 
 

Figure 6 

0

1

2

3

4

5

6

7

8

0.15 0.2 0.25 0.3 0.35 0.4

lo
g

1
0
(u

/k
 (

K
))

r (nm)

http://dx.doi.org/10.1063/1.5085420


 
 

Figure 7 

0

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.4 0.6 0.8 1 1.2

g
 (

r)

r (nm)

V = 28.5 cm
3
/mol

V = 500 cm
3
/mol

http://dx.doi.org/10.1063/1.5085420


 
Figure 8 

0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

g
(r

)

r (nm)

T = 85 K

T = 350 K

http://dx.doi.org/10.1063/1.5085420


 
 

Figure 9 

-50

0

50

100

150

200

250

6.5

7

7.5

8

8.5

9

9.5

10

80 100 120 140 160 180 200

p
 (

M
P

a
)

C
V

r 
(J

/
m

o
l 
K
)

T( K)

http://dx.doi.org/10.1063/1.5085420


 
 

Figure 10 

0

100

200

300

400

500

600

5

5.5

6

6.5

7

7.5

8

8.5

200 300 400 500 600 700 800

p
 (

M
P

a
)

C
V

r 
(J

/m
o

l 
K

)

T (K)

http://dx.doi.org/10.1063/1.5085420


 
 

Figure 11 

0

200

400

600

800

1000

1200

22 24 26 28 30 32 34

p
v
ir
 (

M
P

a
)

V (cm
3
/mol)

http://dx.doi.org/10.1063/1.5085420

	Article File
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

