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Phase diagrams and critical states of ternary Ñuids mixtures are calculated from the van der Waals equation of
state with standard 1-Ñuid mixing rules. BerthelotÈLorentz combining rules are assumed for the binary
interaction parameters. The topological classes of the resulting ternary phase diagrams are determined and
their relationship to the classes of the binary subsystems discussed. It is shown that the phenomena of
““miscibility windowsÏÏ and ““miscibility islands ÏÏ are connected with a special ternary phase diagram class and
can be reproduced even with the van der Waals equation of state.

1 Introduction

Since the pioneering work of van Konynenburg and Scott in
19681 on the global phase behaviour of binary Ñuid mixtures,
based on the van der Waals equation of state, several investi-
gations of the global phase behaviour of binary Ñuid mixtures
were published for more complex equations of state.2h12 The
calculated global phase diagrams for these equations show a
remarkable similarity : The same main phase diagram classes
are found, and also the arrangement of their domains in the
global phase diagrams are quite similar. Di†erences and
model-speciÐc features appear only in small sections of the
global phase diagrams. Even so, a large number of phase
diagram classes has been discovered until now, mostly in
theory, but also the number of classes conÐrmed by experi-
ment exceeds the original number, 5, by far. A rational
nomenclature system for the phase diagram classes, which
thus became necessary, has been proposed elsewhere.13

No equivalent classiÐcation scheme for ternary Ñuid mix-
tures has been established, which is perhaps surprising in view
of the importance of multicomponent mixtures for separation
technology. Previous attempts at calculating phase diagrams
of ternary Ñuid mixtures had mostly been made with the
purpose of matching speciÐc sets of experimental data, so that
they cannot be regarded as systematic investigations of global
phase behaviour ; furthermore, some of the older work is
incomplete in the sense that the global stability of the calcu-
lated critical states had not been checked.14h18 In this work
we present the Ðrst systematic approach to the global phase
behaviour of ternary Ñuid mixtures.

2 Theory
2.1 Equation of state and mixing rules

As we are only interested in the topological properties of
ternary mixtures, we use the van der Waals equation of state19
for this investigation. From the literature on the global phase
behaviour of binary mixtures it is known thatÈexcept for
some ““Ðngerprint domains ÏÏÈall equations of state show a
rather similar behaviour, hence the choice of the van der
Waals equation simpliÐes the calculations without loosing
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generality :
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The substance-speciÐc parameters a and b are related to the
strength of the intermolecular attraction and the molecular
size ; they can be obtained from the critical data :
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This equation of state is extended towards mixtures by means
of quadratic mixing and LorentzÈBerthelot combining rules :
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Integration and addition of the mixing entropy term leads to
the molar Helmholtz energy of a ternary mixture :
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and denote the chemical potential of speciesk
i
` V m`\ RT /p`

i and its molar volume at a very low reference pressure p`, at
which the perfect gas law applies.

2.2 Stability and critical states

The conditions for a critical point in a ternary mixture can be
expressed as20
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where the shorthand notation G
ix1jx2

\ (Li`jGm/Lx1i Lx2j )p, Thas been used. A local stability criterion for a ternary critical
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point is
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However, the Gibbs energy takes the pressure as a natural
variable. In order to apply the conditions of criticality to
pressure-explicit equations of state, which are functions of
molar volume and temperature, it may be more convenient to
express conditions (5) and (6) in terms of Helmholtz energies :

D(2)\
; A2V
A

Vx1
A

Vx2

A
Vx1

A2x1
A

x1x2

A
Vx2

A
x1x2

A2x2

;
\ 0

D(3)\
; A2V
A

Vx1
D

V
(2)

A
Vx1

A2x1
D

x1
(2)

A
Vx2

A
x1x2

D
x2
(2)

;
\ 0 (7)

D(4)\
; A2V
A

Vx1
D

V
(3)

A
Vx1

A2x1
D

x1
(3)

A
Vx2

A
x1x2

D
x2
(3)

;
[ 0

where again a shorthand notation has been used :
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Solving these equations cannot be achieved by standard root
Ðnding algorithms. Instead we used an extension of methods
proposed earlier :1,21 For the van der Waals equation, all
derivatives of the Helmholtz energy [eqn. (4)] with respect to
the molar volume or the mole fractions are linear functions of
temperature. Hence the spinodal criterion D(2)\ 0 turns out
to be a 3rd order polynomial in temperature. Hence

(i) the critical temperature can be calculated for given values
of and by application of CardanoÏs method ;Vm , x1, x2(ii) with this temperature D(3) can then be evaluated.

These two steps are repeated for di†erent values of aVm ;
change of sign in D(3) indicates that a ternary critical point has
been passed, which can then be accurately determined by
means of a regula falsi iteration.

For a ternary system there are two degrees of freedom in a
critical state calculation, hence and can be treated asx1 x2independent properties.

A positive value of D(4) guarantees only the local stability of
a critical point. Let andx1c , x2c , Tc , Vmc , pc \ p(Vmc , Tc , x2c)denote the coordinates of a ternary critical point. Then, in
order to ensure global stability, one has to show that the
Gibbs energy surface of the mixture at the critical pressure
and temperature,

Gm(pc , Tc , x1, x2)\ Am(Vm , Tc , x1, x2)] pc Vm (9)

with

p(Vm , Tc , x1, x2)\ pc
is always above the tangent plane at the critical point. The
latter is given by
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where the chemical potentials are obtained from eqn. (4)k
iand evaluated at the critical state :
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Both Gibbs energy functions, eqns. (9) and (10) require the
calculation of the molar volume for given pressure values by
CardanoÏs method. The comparison of and has toGm Gmtangent

be performed for a representative number of com-(x1, x2)binations and is the most time-consuming step in the calcu-
lation of a ternary phase diagram.

3 Phase diagram classes of ternary mixtures
3.1 Dimensionless parameter ratios

Even for the simple van der Waals equation 12 parameters a
ikand are required to characterize a ternary mixture. Inb

ikorder to reduce the degrees of freedom in our survey of
ternary phase diagram classes we deÐne dimensionless param-
eters, following the deÐnitions given elsewhere :6
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The interaction density is deÐned for the van der Waalsd
ikequation by :
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These parameter ratios are not independent ; combination of
the equations above yields :
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We furthermore assume BerthelotÈLorentz combining rules
[all in eqn. (3)], which is a reasonable approx-g
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\ h

ik
\ 0

imation for many nonpolar mixtures. With this simpliÐcation
the deÐnition of can be transformed by a somewhatj

iklengthy calculation into
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It is thus possible to express all the parameters of one of the
binary subsystems of a ternary mixture by those of the two
others, and only and remain as independentm12 , m13 , f12 , f13parameters.

3.2 Ternary global phase diagrams

Fig. 1 shows the global phase diagram of a binary van der
Waals mixture for equal sized molecules (m \ 0, g \ 0). Each
point of the diagram represents a phase diagram of a mixture
with the parameters speciÐed. The curves shown are

(i) tricritical curves, along which phase diagrams can be
found where a three-phase line shrinks to zero length (e.g.,
transition from class II to IV) ;

(ii) double critical endpoint curves, which mark the joining
of two three-phase line segments (e.g., transition from class IV
to V) ;

(iii) azeotropic boundary curves, representing phase dia-
grams with an azeotrope at composition x \ 0 or x \ 1 (e.g.,
transition from class I to I-A) ;

(iv) and curves representing phase diagrams with critical
azeotropic endpoints (transition from III-A to III-HA).

A more detailed discussion of this and similar global phase
diagrams and the phase diagram classes involved are given in
other publications of this Workshop.

The BerthelotÈLorentz combining rule (15) is represented
by a semicircle, which intersects the tricritical curves and
simultaneously the double critical endpoint curves in the van
Laar points at f\ ^0.5. These points mark the transition
from binary phase diagram class II (\ 1Pl in the modern
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Fig. 1 Global phase diagram of a binary mixture of equal-sized mol-
ecules (after Bolz). See text for explanation of curves.

nomenclature) to class III (\ 1C1Z). These two classes are the
only ones possible under BerthelotÈLorentz combining rules.

The possible phase diagram class combinations for a
ternary mixture are shown in Fig. 2, again for the case of
equal-sized molecules. The horizontal and vertical boundaries
mark the transitions II ] III or back for the 1È2 and the 1È3
subsystems ; the curved boundaries represent the II ] III tran-
sition in the 2È3 subsystem in eqn. (14)].[f23\ 0.5

The diagonal with the positive slope represents ternary mix-
tures with i.e. cases where the 1È2 subsystem andf12 \ f13 ,
the 1È3 subsystem have become identical. The diagonal with
the negative slope represents ternary mixtures(f12\ [f13)where the interaction parameter is equal to the geometrica33mean of anda11 a22 .

Fig. 2 enables us to predict a ternary phase behaviour from
the phase diagram classes of two of its binary subsystems.

For mixtures containing molecules of di†erent sizes the
BerthelotÈLorentz curve no longer passed through the van
Laar point, but intersects the tricritical curves and the double
critical endpoint curves at di†erent f values (see Fig. 1).
Between these intersections domains of class IV (\ 2Pl) or
IV* ( \ 2C1Z) can be found. The resulting global phase
diagram is very similar to Fig. 2 ; the only di†erence is that the
boundary lines become narrow bands of domains IV and IV*.
The rather complicated ternary phase diagram classes caused
by the interaction of binary class IV with the other binary
classes are not considered in this work.

Fig. 2 Global phase diagram of a ternary mixture of equal-sized
molecules obeying the BerthelotÈLorentz combining rules. Field
colours refer to the binary subsystems forming the ternary system:
red : II ] II ] II, white : II ] II ] III, yellow: II ] III ] III, blue :
III ] III ] III.

3.3 Ternary phase diagrams

From Fig. 2 one can conclude that there are 8 major ternary
phase diagram classes. They are listed together with their con-
stituting binary subsystems in Table 1.

Naturally, the two-dimensional representation of a four-
dimensional ternary phase diagram (p, T , is a ratherx1, x2)difficult task. In this work we use two di†erent graphical rep-
resentations :

(i) a pseudobinary (p, T , x*) representation, where x*
denotes the relative amounts of the heavier components :

The sections at x* \ 0 or x* \ 1 representx* \x2/(x2 ] x3).true binary phase diagrams ;
(ii) a prismatic pressure projection, where the vertical axis

represents the critical pressure and the triangular prism base
the ternary concentrations. It should be noted that in these
diagrams the temperature is not constant along a critical
plane.

The parameters of the equation of state which had been
used to calculate the phase diagrams are given in Table 2 and
in the Ðgure captions. The (major) ternary phase diagram
classes can then be described as follows :

T ernary class I : Phase diagrams of this class (Figs. 3 and 4)
have closed lg-critical curves between the three critical points
of the pure components. All binary subsystems are of the

Table 1 Ternary phase diagram classes and classes of binary sub-
systems (assuming equal-sized molecules, BerthelotÈLorentz combin-
ing rules)

Binary subsystems Ternary class

I I I T-I
I I II T-II
I I III T-III
I II II È
I II III T-V
I III III T-IV, T-V
II II II T-VIII
II II III È
II III III È
III III III T-VII

Table 2 Van der Waals parameters used for the calculated ternary
phase diagrams

a
ii
/ b

ii
/

i bar dm6 mol~2 cm3 mol~1 i j h
ij

f
ij

1 1.3572 32.1 1 2 0.00 0.00
2 2.3251 39.6 1 3 0.00 0.00

Fig. 3 Critical surface of ternary class IÈ(p, T , x*) representation.
Circles : pure Ñuid critical points, dots : ternary critical points, param-
eters : bar dm6 mol~2, dm3 mol~1 (othera33\ 4.1697 b33\ 0.0513
parameters listed in Table 2).
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Fig. 4 Ternary class IÈprismatic representation (critical pressure vs.
compositionsÈnon-isothermal (p, representation).x1, x2 , x3)

binary type I according to the nomenclature of van Konynen-
burg and Scott.1 This class is only possible for very similar
chemical compounds.

T ernary class II : This ternary phase diagram has two
binary subsystems of type I and one binary subsystem of type
II. Consequently, there isÈin addition to the lg-critical
surfaceÈan ll-critical plane at low temperatures (Figs. 5 and
6). Its border at low pressures, is a critical endpoint curve,
which marks the beginning of a three-phase domain. This
curve consists of upper critical endpoints and is called upper
critical endline (UCEL) in this work.

T ernary class III : The ternary type III has one binary sub-
system of type III and two binary subsystems of type I. There
is only one contiguous critical plane, which appears to have a
gash in it (Figs. 7 and 8). The rim of the gash is an UCEL,
which ends in a tricritical point. Along the other side of the
gash the critical plain runs to inÐnite pressures, and a contin-
uous transition from lg to ll phase equilibria takes place.

T ernary class IV : This is one of the classes occurring if one
binary subsystem is of type I and both other binary sub-
systems are of type III. Typical examples would be systems
containing two similar heavy components plus one very light

Fig. 5 Ternary class IIÈ(p, T , x*) representation (calculated and
schematic). Thin curves originating at T \ 0 are vapour-pressure
curves. Parameters : bar dm6 mol~2, dm3a33\ 1.1697 b33 \ 0.0513
mol~1.

Fig. 6 Ternary class IIÈprismatic representation.

Fig. 7 Ternary class IIIÈ(p, T , x*) representation (calculated and
schematic). Parameters : bar dm6 mol~2,a33 \ 4.1697 b33\ 0.1353
dm3 mol~1.

Fig. 8 Ternary class IIIÈprismatic representation.
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component, which shows type III behaviour with either of the
heavy ones. There is a large critical surface running upwards
to inÐnite pressure at high temperatures, and a smaller one at
low temperatures, which is bounded by an UCEL (Figs. 9 and
10).

T ernary class V : Here the binary subsystems are of type I,
II and III. This class is quite similar to class III, except that
there is an additional ll-critical surface at low temperatures
(Figs. 11 and 12).

T ernary class V I : This class is the ““opposite ÏÏ of ternary
class IV. Again, the binary subsystems are of type I, III, and
III, but now we have the case of two similar light compounds
mixed with a heavy one. There are two critical surfaces ; again
the lower one is bounded by an UCEL (Figs. 13 and 14).

T ernary class V II : All binary subsystems of the ternary
type VII are of the binary type III. This ternary phase
diagram has three critical planes. The critical surface of the
component with the highest critical data shows ll-critical
behaviour, the surface of the component with the lowest criti-
cal data lg-critical behaviour, and the third component has a
critical plane showing ll critical behaviour with the light com-

Fig. 9 Ternary class IVÈ(p, T , x*) representation (calculated and
schematic). Parameters : bar dm6 mol~2,a33 \ 4.1697 b33\ 0.1513
dm3 mol~1.

Fig. 10 Ternary class IVÈprismatic representation.

Fig. 11 Ternary class VÈ(p, T , x*) representation (calculated and
schematic). Parameters : bar dm6 mol~2,a33 \ 8.1697 b33\ 0.0513
dm3 mol~1.

ponent and lg critical behaviour with the other one (Figs. 15
and 16).

T ernary class V III : Finally there is a ternary class in which
all binary subsystems are of type II. The phase diagram shows
a contiguous lg-critical surface (as for the ternary class I), and
in addition there are three ll-critical surfaces at lower tem-
peratures (Fig. 17). Depending on the temperature ranges of
the ll surfaces and binary interaction parameters of the
mixture constituents several subtypes are conceivable ; practi-
cally, however, these ll surfaces will probably be hidden by
crystallisation.

It should be noted that several combinations of binary sub-
system classes cannot occur under the conditions deÐned
above. If some of the restrictions are dropped and molecules
deviating from the BerthelotÈLorentz combining rules are
considered, the number of possible ternary phase diagram
classes becomes enormous. On the other hand, for practical
purposes the number of distinguishable phase diagram classes
may be smaller, because liquidÈliquid immiscibility is often
hidden by crystallization.

Fig. 12 Ternary class VÈprismatic representation.
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Fig. 13 Ternary class VIÈ(p, T , x*) representation (calculated and
schematic). Parameters : bar dm6 mol~2,a33\ 11.1697 b33\ 0.0513
dm3 mol~1.

Fig. 14 Ternary class VIÈprismatic representation.

Fig. 15 Ternary class VIIÈ(p, T , x*) representation (calculated and
schematic).

Fig. 16 Ternary class VIIÈprismatic representation.

3.4 Miscibility windows

Ternary mixtures of ternary class IV can give rise to a peculiar
phenomenon called miscibility window. If, due to cosolvency
e†ects, a critical isopleth (at constant x*) is at lower pressure
than its counterparts for the binary subsystems (at x* \ 0 or
x* \ 1), an experimentalist would observe that a binary

Fig. 17 Ternary class VIIIÈprismatic representation.

Fig. 18 Ternary class IV with an isobaric miscibility windowÈ(p, T ,
x*) representation. Parameters : bar dm6a11\ 20, a22\ 23, a33\ 8
mol~2 ; dm3 mol~1 ;b11\ b22\ 0.11, b33\ 0.125 h12\[0.08,

all other set to 0.f12\[0.13 ; h
ij
, f

ij

4312 Phys. Chem. Chem. Phys., 1999, 1, 4307È4313



mixture in the two-phase state would become homogeneous
and then heterogeneous again upon adding an amount of the
third compound. The phenomenon can best be explained with
the (p,T ,x*) phase diagram of ternary class IV: The high-
temperature critical surface is formed like a chair ; a depres-
sion in the ““ seat ÏÏ gives rise to an isobaric miscibility window.
An example is shown in Fig. 18. Likewise, a depression in the
““back of the chair ÏÏ would be noted as an isothermal misci-
bility window. The opposite e†ect, a diminished mutual misci-
bility of the ternary system, is called a miscibility island.

Both e†ects have been observed experimentally,22,23 and
have some signiÐcance for separation technology, e.g. for
supercritical Ñuid extraction. It is interesting to note that even
the van der Waals equation of state is able to reproduce these
phenomena.

4 Conclusions
Even with the restriction to mixtures obeying the BerthelotÈ
Lorentz combining rules, there is an impressive variety of
ternary phase diagram classes, of which eight major classes
have been outlined in this work. One of these classes, ternary
class IV, is capable of producing the phenomena of miscibility
windows even with the van der Waals equation of state. It is
thus shown that miscibility windows are not necessarily
caused by speciÐc interactions between the mixture com-
ponents, but are rather a topological phenomenon with no
special requirements from the equation of state or mixing
rules.
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6 Symbols
A Helmholtz energy
a attraction parameter of van der Waals equation
b covolume parameter of van der Waals equation
D(k) stability determinant of kth order
G Gibbs energy
n amount of substance
p pressure
R universal gas constant
T temperature
V volume
x mole fraction
x* mole fraction of component 2 on a solvent-free basis
x– vector of all mole fractions x

ig global phase diagram parameter : size nonadditivity
f global phase diagram parameter : pure component

attraction parameter ratio
j global phase diagram parameter : binary attraction

parameter ratio

k chemical potential
m global phase diagram parameter : pure component size

ratio
Subscripts :
c critical property
i referring to component i
m molar property
p derivative with respect to pressure (at constant tem-

perature and composition)
V derivative with respect to molar volume (at constant

temperature and composition)
x derivative with respect to mole fraction
Superscripts :
> reference state
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